Skip to main content
Log in

Cloning of tropomyosins from lobster (Homarus americanus) striated muscles: fast and slow isoforms may be generated from the same transcript

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Complementary DNAs encoding fibre-type-specific isoforms of tropomyosin (Tm) have been isolated from lobster (Homarus americanus) striated muscle expression libraries made from poly(A)+ RNA purified from deep abdominal (fast-type) and crusher-claw closer (slow-type) muscles. A cDNA of slow-muscle Tm (sTm1), containing a complete open reading frame (ORF) and portions of the 5 prime; and 3 prime untranslated regions (UTRs), encodes a protein of 284 amino acid residues with a predicted mass of 32950, assuming acetylation of the amino terminus. The nucleotide sequence of a fast-muscle tropomyosin (fTm cDNA), which includes the entire ORF and part of the 3 prime UTR, is identical to that of sTm1 cDNA, except in the region encoding amino acid residues 39-80 (equivalent to exon 2 of mammalian and Drosophila muscle tropomyosin genes). The deduced amino acid sequences, which display the heptameric repeats of nonpolar and charged amino acids characteristic of alpha-helical coiled-coils, are highly homologous to tropomyosins from rabbit, Drosophila, and shrimp (57% to 99% identities, depending on species). Northern blot analysis showed that two transcripts (1.1 and 2.1kb) are present in both fibre types. Mass spectrometry indicated that fast muscle contains one major isoform (fTm: 32903), while slow muscle contains two major isoforms (sTm1 and sTm2: 32950 and 32884 respectively). Both Tm preparations contained minor species with a mass of about 32830. Sequences of peptides derived from purified slow and fast Tms were identical to the deduced amino acid sequences of the sTm1 and fTm cDNAs, respectively, except in the C-terminal region of fTm. The difference in mass between that predicted by the deduced sequence (32880) and that measured by mass spectrometry (32903) suggests that fTm is post-translationally modified, in addition to acetylation of the N-terminal methionine. These data are consistent with the hypothesis that the fTm and sTm1 are generated by alternative splicing of two mutually-exclusive exons near the 5 prime end of the same gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BASI, G. S., BOARDMAN, M. & STORTI, R. V. (1984) Alternative splicing of a Drosophila tropomyosin gene generates muscle tropomyosin isoforms with different carboxy-terminal ends. Mol. Cell. Biol. 4, 2828–36.

    PubMed  CAS  Google Scholar 

  • BERNSTEIN, S. I., O'DONNELL, P. T. & CRIPPS, R. M. (1993) Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int. Rev. Cytol. 143, 63–152.

    Article  CAS  Google Scholar 

  • BEYETTE, J. R. & MYKLES, D. L. (1992) Immunocytochemical localization of the multicatalytic proteinase (proteasome) in crustacean striated muscles. Muscle Nerve 15, 1023–35.

    Article  PubMed  CAS  Google Scholar 

  • BIEMANN, K. (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Meth. Enzymol. 193, 886–8.

    Article  PubMed  CAS  Google Scholar 

  • BREITBART, R. E., ANDREADIS, A. & NADAL-GINARD, B. (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Ann. Rev. Biochem. 56, 467–95.

    Article  PubMed  CAS  Google Scholar 

  • CHO, Y.-J., LIU, J. & HITCHCOCK-DEGREGORI, S. E. (1990) The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538–45.

    PubMed  CAS  Google Scholar 

  • CHO, Y.-J. & HITCHCOCK-DEGREGORI, S. E. (1991) Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl Acad. Sci. USA 88, 10153–7.

    Article  PubMed  CAS  Google Scholar 

  • COSTELLO, W. J. & GOVIND, C. K. (1984) Contractile proteins of fast and slow fibers during differentiation of lobster claw muscle. Dev. Biol. 104, 434–40.

    Article  PubMed  CAS  Google Scholar 

  • COTTON, J. L. S. & MYKLES, D. L. (1993) Cloning of a crustacean myosin heavy chain isoform: exclusive expression in fast muscle. J. Exp. Zool. 267, 578–86.

    Article  PubMed  CAS  Google Scholar 

  • CRICK, F. H. C. (1953) The packing of a-helices: simple coiled coils. Acta Cryst. 6, 689–97.

    Article  CAS  Google Scholar 

  • DAUL, C. B., SLATTERY, M., REESE, G. & LEHRER, S. B. (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int. Arch. Allergy Immunol. 105, 49–55.

    PubMed  CAS  Google Scholar 

  • FORRY-SCHAUDIES, S. & HUGHES, S. H. (1991) The chicken tropomyosin 1 gene generates nine mRNAs by alternative splicing. J. Biol. Chem. 266, 13821–7.

    PubMed  CAS  Google Scholar 

  • GREENFIELD, N. J. & HITCHCOCK-DEGREGORI, S. E. (1995) The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry 34, 16797–805.

    Article  PubMed  CAS  Google Scholar 

  • HAMMELL, R. L. & HITCHCOCK-DEGREGORI, S. E. (1996) Mapping the functional domains within the carboxy terminus of α-tropomyosin by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236–42.

    Article  PubMed  CAS  Google Scholar 

  • HANKE, P.D. & STORTI, R. V. (1988) The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing. Mol. Cell. Biol. 8, 3591–602.

    PubMed  CAS  Google Scholar 

  • HARDY, S., FISZMAN, M. Y., OSBORNE, H. B. & THIEBAUD, P. (1991) Characterization of muscle and non-muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene-Developmental and tissue-specific expression. Eur. J. Biochem. 202, 431–40.

    Article  PubMed  CAS  Google Scholar 

  • HITCHCOCK-DEGREGORI, S. E. (1994) Structural requirements of tropomyosin for binding to filalamentous actin. Adv. Exp. Med. Biol. 358, 85–96.

    PubMed  CAS  Google Scholar 

  • HITCHCOCK-DEGREGORI, S. E. & AN, Y. M. (1996) Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin to the regulated actin filament. J. Biol. Chem. 271, 3600–603.

    Article  PubMed  CAS  Google Scholar 

  • KARLIK, C. C. & FYRBERG, E. A. (1986) Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol. Cell. Biol. 6, 1965–73.

    PubMed  CAS  Google Scholar 

  • KRIEGER, J., RAMING, K., KNIPPER, M., GRAU, M., MERTENS, S. & BREER, H. (1990) Cloning, sequencing and expression of locust tropomyosin. Insect Biochem. 20, 173–84.

    Article  CAS  Google Scholar 

  • LEES-MILLER, J. P., GOODWIN, L. O. & HELFMAN, D. M. (1990) Three novel brain tropomyosin isoforms are expressed from the rat α-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol. Cell. Biol. 10, 1729–42.

    PubMed  CAS  Google Scholar 

  • LEES-MILLER, J. P. & HELFMAN, D. M. (1991) The molecular basis for tropomyosin isoform diversity. BioEssays 13, 429–37.

    Article  PubMed  CAS  Google Scholar 

  • LEMONNIER, M., BALVAY, L., MOULY, V., LIBRI, D. & FISZMAN, M. Y. (1991) The chicken gene encoding the a isoform of tropomyosin of fast-twitch muscle fibers: organization, expression and identification of the major proteins synthesized. Gene 107, 229–40.

    Article  PubMed  CAS  Google Scholar 

  • LEUNG, P. S. C., CHU, K. H., CHOW, W. K., ANSARI, A., BANDEA, C. I., KWAN, H. S., NAGY, S. M. & GERSHWIN, M. E. (1994) Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J. Allergy Clin. Immunol. 94, 882–90.

    Article  PubMed  CAS  Google Scholar 

  • LI, Y. & MYKLES, D. L. (1990) Analysis of myosins from lobster muscles: fast and slow isozymes differ in heavy-chain composition. J. Exp. Zool. 255, 163–70.

    Article  CAS  Google Scholar 

  • MCMACHLAN, A. D. & STEWART, M. (1976) The 14-fold periodicity in α-tropomyosin and the interaction with actin. J. Mol. Biol. 103, 271–98.

    Article  Google Scholar 

  • MATTSON, J. M. & MYKLES, D. L. (1993) Differential degradation of myofibrillar proteins by four calcium dependent proteinase activities from lobster muscle. J. Exp. Zool. 265, 97–106.

    Article  CAS  Google Scholar 

  • MEREDITH, J. & STORTI, R. V. (1993) Developmental regulation of the Drosophila tropomyosin II gene in different muscles is controlled by muscle-type-specific intron enhancer elements and distal and proximal promoter control elements. Dev. Biol. 159, 500–512.

    Article  PubMed  CAS  Google Scholar 

  • MIEGEL, A., KOBAYASHI, T. & MAÉDA, Y. (1992) Isolation, purification and partial characterization of tropomyosin and troponin subunits from the lobster tail muscle. J. Muscle Res. Cell Motil. 13, 608–18.

    Article  PubMed  CAS  Google Scholar 

  • MIYAZAKI, J.-I., HOSOYA, M., ISHIMODA-TAKAGI, T. & HIRABAYASHI, T. (1990) Tissue specificity of tropomyosin from the crayfish, Cambarus clarki. J. Biochem. (Tokyo) 108, 59–65.

    CAS  Google Scholar 

  • MIYAZAKI, J.-I., MAKIOKA, T., FUJ IWARA, Y. & HIRABAYASHI, T. (1992) Tissue specificity of crustacean tropomyosin J. Exp. Zool. 263, 235–44.

    Article  CAS  Google Scholar 

  • MIYAZAKI, J.-I., YAHATA, K., MAKIOKA, T. & HIRABAYASHI, T. (1993) Tissue specificity of arthropod tropomyosin. J. Exp. Zool. 267, 501–9.

    Article  CAS  Google Scholar 

  • MUTHUCHAMY, M., PAJAK, L., HOWLES, P., DOETSCHMAN, T. & WIECZOREK, D. F. (1993) Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol. Cell. Biol. 13, 3311–23.

    PubMed  CAS  Google Scholar 

  • MYKLES, D. L. (1985a) Multiple variants of myofibrillar proteins in single fibers of lobster claw muscles: evidence for two types of slow fibers in the cutter closer muscle. Biol. Bull. 169, 476–83.

    Google Scholar 

  • MYKLES, D. L. (1985b) Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages. J. Exp. Zool. 234, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • MYKLES, D. L. (1988) Histochemical and biochemical characterization of two slow fiber types in decapod crustacean muscles. J. Exp. Zool. 245, 232–43.

    Article  PubMed  CAS  Google Scholar 

  • NEIL, D. M., FOWLER, W. S. & TOBASNICK, G. (1993) Myo-fibrillar protein composition correlates with histochemistry in fibres of the abdominal flexor muscles of the Norway lobster Nephrops norvegicus. J. Exp. Biol. 183, 185–201.

    CAS  Google Scholar 

  • NISHITA, K. & OJ IMA, T. (1990) American lobster troponin. J. Biochem. (Tokyo) 108, 677–83.

    CAS  Google Scholar 

  • O'SHEA, E. K., KLEMM, J. D., KIM, P. S. & ALBER, T. (1991) X-ray structure of the GCN4 leucine zipper, a twostranded, parallel coiled coil. Science 254, 539–44.

    PubMed  Google Scholar 

  • PETTE, D. & STARON, R. S. (1990) Cellular and molecular diversities of mammalian skeletal muscle fbers. Rev. Physiol. Biochem. Pharmacol. 116, 1–76.

    PubMed  CAS  Google Scholar 

  • QUIGLEY, M. M. & MELLON, D. E. F., JR (1984) Changes in myofibrillar gene expression during fiber-type transformation in the claw closer muscles of the snapping shrimp, Alpheus heterochelis. Dev. Biol. 106, 262–5. a]RUIZ-OPAZO, N. & NADAL-GINARD, B. (1987) α-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J. Biol. Chem. 262, 4755–65.

    Article  CAS  Google Scholar 

  • SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • SCHIAFFINO, S. & REGGIANI, C. (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76, 371–423.

    PubMed  CAS  Google Scholar 

  • SHANTI, K. N., MARTIN, B. M., NAGPAL, S., METCALFE, D. D. & SUBBA RAO, P. V. (1993) Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 151, 5354–63.

    PubMed  CAS  Google Scholar 

  • STONE, D. & SMILLIE, L. B. (1978) The amino acid sequence of rabbit skeletal α-tropomyosin. J. Biol. Chem. 253, 1137–48.

    PubMed  CAS  Google Scholar 

  • SWYNGHEDAUW, B. (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol. Rev. 66, 710–71.

    PubMed  CAS  Google Scholar 

  • TANIGUCHI, H., MANENTI, S., SUZUKI, M. & TITANI, K. (1994a) Myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, is an in vivo substrate of proline-directed protein kinase(s). J. Biol. Chem. 269, 18299–302.

    PubMed  CAS  Google Scholar 

  • TANIGUCHI, H., SUZUKI, M., MANENTI, S. & TITANI, K. (1994b) A mass spectrometric study on the in vivo posttranslational modification of GAP-43. J. Biol. Chem. 269, 22481–4.

    PubMed  CAS  Google Scholar 

  • TSUKAHARA, T., CASCIATO, C. & HELFMAN, D. M. (1994) Alternative splicing of β-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5′-and 3′-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Res. 22, 2318–25.

    PubMed  CAS  Google Scholar 

  • URBANCIKOVA, M. & HITCHCOCK-DEGREGORI, S. E. (1994) Requirement of amino-terminal modification for striated muscle α-tropomyosin function. J. Biol. Chem. 269, 24310–15.

    PubMed  CAS  Google Scholar 

  • WITTEMAN, A. M., AKKERDAAS, J. H., VAN LEEUWEN, J., VAN DER ZEE, J. S. & AALBERSE, R. C. (1994) Identi-fication of a cross-reactive allergen (presumably tropomyosin) in shrimp, mite and insects. Int. Arch. Allergy Immunol. 105, 56–61.

    Article  PubMed  CAS  Google Scholar 

  • ZOLFAGHARI, R., CHEN, X. & FISHER, E. A. (1993) Simple method for extracting RNA from cultured cells and tissue with guanidine salts. Clin. Chem. 39, 1408–11.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MYKLES, D.L., COTTON, J.L., TANIGUCHI, H. et al. Cloning of tropomyosins from lobster (Homarus americanus) striated muscles: fast and slow isoforms may be generated from the same transcript. J Muscle Res Cell Motil 19, 105–115 (1998). https://doi.org/10.1023/A:1005352410725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005352410725

Keywords

Navigation