Skip to main content
Log in

Far infrared remote sounding of stratospheric temperature and trace gas distributions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The thermal emission spectrum of the Earth's stratosphere in the far infrared exhibits rotational transitions of a large number of trace constituents in addition to the magnetic dipole lines of molecular oxygen. Stratospheric lines that have been identified in the far infrared spectrum include H2O, O3, HNO3, N2O, CO, HCl, HF, HCN and OH. This paper discusses the potential usefulness of far infrared thermal emission measurements for simultaneous retrieval of temperature and constituent distributions. A description of the high-resolution Michelson interferometer currently employed for balloon-borne far infrared stratospheric studies is given, along with a summary of the mode of limbscan observations and an example of an observed spectrum. Numerical results based on synthetic limb radiance data for model atmospheres are presented. Formal inversion techniques with a radiative transfer model based on line-by-line transmittance calculations are employed.

Temperature profiles are retrieved from synthetic spectra by an inversion of the O2 magnetic dipole lines. Vertical trace gas mixing ratio profiles are determined from an analysis of the corresponding spectral emission features. Numerical results based on synthetic limb radiance data are presented in order to assess the retrieval accuracies of the temperature profiles and the vertical mixing ratio profiles of O3, HCl, and OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, M. M., Kunde, V. G., Mumma, M. J., Kostiuk, T., and Buhl, D., 1979, Infrared heterodyne spectroscopy of the stratosphere, J. Geophys. Res. 84, 2681–2690.

    Google Scholar 

  • Abbas, M. M., 1979, A new inversion method for remote sounding of planetary atmospheres, J. Geophys. Res. 84, 4387.

    Google Scholar 

  • Abbas, M. M., Shapiro, G. L., and Alvarez, J. M., 1981, Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms, Applied Optics, Vol. 20, 3755–3762.

    Google Scholar 

  • Abbas, M. M., G. L. Shapiro, B. J. Conrath, V. G. Kunde, W. C. Maguire, 1983, A method for correction of errors in observation angles for limb thermal emission measurements, Appl. Opt., in press.

  • AFGL, Atmospheric Absorption Line Parameters Compilation and AFGL Trace Gas Compilation, 1982.

  • Blackman, R. B. and Tukey, J. W., 1958, The Measurement of Power Spectra, Dover, New York.

    Google Scholar 

  • Carli, B., Mencaraglia, F., and Bonetti, A., 1980, Fourier spectroscopy of the stratospheric emission, Int. J. Infrared and Millimeter Waves 1, 263.

    Google Scholar 

  • Carli, B., Mencaraglia, F., and Bonetti, A., 1982, New assignments in the submillimeter emission spectrum of the stratosphere, Int. J. Infrared and Millimeter Waves 3, 385–394.

    Google Scholar 

  • Carli, B., Mencaraglia, F., Bonetti, A., Dinelli, B. M., and Forni, F., 1983, Submillimeter detection of stratospheric OH and further line assignments in the stratospheric emission spectrum, Int. J. Infrared and Millimeter Waves 4, 475–488.

    Google Scholar 

  • Chahine, M. T., 1970, A general relaxation method for inverse solution of the full radiative transfer equation, J. Atmos. Sci. 27, 960–967.

    Google Scholar 

  • Chahine, M. T., 1972, A general relaxation method for inverse solution of the full radiative transfer equation, J. Atmos. Sci. 29, 741–747.

    Google Scholar 

  • Chance, K. V., Brasunas, J. C., and Traub, W. A., 1980, Far infrared measurements of stratospheric HCl, Geophys. Res. Lett. 7, 704–706.

    Google Scholar 

  • Clark, T. A. and Kendall, D. J. W., 1976, Far infrared emission spectrum of the stratosphere from balloon altitudes, Nature 260, 31–32.

    Google Scholar 

  • Conrath, B. J., 1977, Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles, in A., Deepak (Ed.), Inversion Methods in Atmospheric Remote Sounding, Academic Press, New York.

    Google Scholar 

  • Deepak, A., 1977, Inversion Methods in Atmospheric Remote Sounding, Academic Press, New York.

    Google Scholar 

  • El-Ataway, S., Ade, P. A. R., Radostitz, J. V., and Nolt, I. G., 1980, Evaluation of composite bolometers at 0.4 Kelvin, Int. J. Infrared and Millimeter Waves 1, 459–468.

    Google Scholar 

  • Gille, J. C., and House, F. B., 1971, On the inversion of limb radiance measurements I: Temperature and thickness, J. Atmos. Sci. 28, 1427.

    Google Scholar 

  • Harries, J. E., Swann, N. R., Carruthers, G. P., and Robinson, G. A., 1973, Infrared Physics 13, 149–155.

    Google Scholar 

  • Harries, J. E., Moss, D. G., Swann, N. R., Neill, G. F., and Gildwarg, P., 1976, Nature 259, 300–302.

    Google Scholar 

  • Harries, J. E., 1982, Infrared and submillimeter spectroscopy of the atmosphere, in K. J., Button (Ed.), Infrared and Millimeter Waves, Academic Press, New York.

    Google Scholar 

  • Kendall, D. J. W. and Clark, T. A., 1978, Balloon-borne far-infrared atmospheric emission studies, Infrared Physics 18, 803–813.

    Google Scholar 

  • Kendall, D. J. W. and Clark, T. A., 1979, Balloon-borne far-infrared Michelson interferometer for atmospheric emission studies, Appl. Opt. 18, 346–353.

    Google Scholar 

  • Kendall, D. J. W. and Clark, T. A., 1981, Detection of minor constituents of the stratosphere by far infrared emission spectroscopy, Int. J. Infrared and Millimeter Waves 2, 783–808.

    Google Scholar 

  • Kunde, V. G., and Maguire, W. C., 1974, Direct integration transmittance model, J. Quantum Spectrosc. Radiat. Transfer 14, 803–817.

    Google Scholar 

  • Martin, D. H. and Puplett, E., 1969, Polarised interferometric spectrometry for the millimetre and submillimetre Spectrum, Infrared Physics 10, 105–109.

    Google Scholar 

  • Radostitz, J. V., Nolt, I. G., Kittle, P., and Donnelly, R. J., 1978, Portable 3He detector cryostat for the far infrared, Rev. Sci. Instr. 49.

  • Radostitz, J. V., Predko, S., Nolt, I. G., Ade, P. A. R., Davis, J. E., and Carli, B., A three channel 3He-cooled balometer system for balloon-based atmospheric spectroscopy, in prep. for. Int. J. Infrared and Millimeter Waves.

  • Rothman, L. S., Goldman, A., Gillis, J R., Gamache, R. R., Pickett, H. M., Poynter, R. L., Husson, N., and Chedin, A., 1983, AFGL trace gas compilation: 1982 version, Appl. Opt. 22, 1616–1627.

    Google Scholar 

  • Smith, W. L., 1970, Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere, Appl. Opt. 9, 1993–1999.

    Google Scholar 

  • Traub, W. A. and Chance, K. V., 1981, Stratospheric HF and HCl observations, Geophys. Res. Lett. 8, 1075–1077.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, M.M., Guo, J., Nolt, I.G. et al. Far infrared remote sounding of stratospheric temperature and trace gas distributions. J Atmos Chem 2, 145–161 (1984). https://doi.org/10.1007/BF00114128

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114128

Key words

Navigation