Skip to main content
Log in

A criterion for optimum adhesion applied to fibre reinforced composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of physical adhesion on the mechanical properties of a composite structure are examined in this work. A criterion for optimum adhesion between matrix and reinforcing fibres is proposed based on maximizing the wetting tension. It is shown that the maximum wetting tension criterion best fulfils two important requirements for a strong interface:(i) the physical interactions at the molecular level between the resin and the fibres must be maximized, and (ii) the liquid resin must spontaneously wet the fibre surface in order to minimize the flow density at the interface. The conditions on the surface energy of the various phases leading to maximum wetting tension are analysed considering three mixing rules: two based on dispersive–polar interactions, and a third one based on acid–base interactions. The optimum adherend for a given adhesive, and the optimum adhesive for a given adherend, are examined. The analysis shows that maximum wetting tension is obtained when the substrate and adhesive surface energies are very high and equal, so that their polar and dispersive components are equal when the polar–dispersive mixing rule is used, and e.g. their Lifshitz–van der Waals’ components are equal and the acid component of one phase is equal to the basic component of the other phase when the acid–base approach is considered. It is shown using data from the literature that interfacial strength correlates with the wetting tension for fibre reinforced composites. Additional observations show that under poor wetting conditions the voids tend to concentrate at the fibre–resin interface, whereas under favourable wetting conditions they tend to coalesce in regions away from the fibre surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. R. RILEY, J. Compos. Mater. 2 (1968) 436.

    Google Scholar 

  2. W. A. FRASER, F. H. ANCKER, A. T. DIBENEDETTO and B. ELBIRLI, Polym. Compos. 4 (1983) 238.

    Article  CAS  Google Scholar 

  3. M. S. MADHUKAR and L. T. DRZAL, J. Compos. Mater. 25 (1991) 932.

    CAS  Google Scholar 

  4. M. R. PIGGOTT, Comp. Sci. Technol 30 (1987) 295.

    Article  CAS  Google Scholar 

  5. L. T. DRZAL, M. J. RICH and P. F. LLOYD, J. Adhesion 16 (1982) 1.

    Google Scholar 

  6. N. L. HANCOX, J. Mater. Sci. 10 (1975) 234.

    Article  CAS  Google Scholar 

  7. I. VERPOEST and G. S. SPRINGER, J. Reinforced Plastics Compos. 7 (1988) 23.

    CAS  Google Scholar 

  8. L. T. DRZAL and P. J. HERRERA FRANCO, in “Engineered materials handbook” Vol. 3 “Adhesive and sealants” edited by C. A. Dostal (American Society for Metals, Metal Park, OH, 1990) 391.

    Google Scholar 

  9. J. P. FAVRE, in the Conference on Interfacial Phenomena in Composite Materials, Sheffield, (1989) p. 7.

  10. M. R. PIGGOTT and M. M. REBOREDO, in the 34th International SAMPE Symposium (1989) p. 1923.

  11. A. N. GENT and A. J. KINLOCH, J. Polym. Sci. 9 (1971) 659.

    CAS  Google Scholar 

  12. A. N. GENT and J. SCHULTZ, J. Adhesion 3 (1972) 281.

    CAS  Google Scholar 

  13. W. A. ZISMAN, in “Contact Angle, wettability and adhesion”, Advances in Chemistry Series Vol. 43 (American Chemical Society, Washington, DC 1964).

    Google Scholar 

  14. S. WU, J. Adhesion 5 (1973) 39.

    CAS  Google Scholar 

  15. Y. KITAZAKI and T. HATA, J. ibid. 4 (1972) 123.

    CAS  Google Scholar 

  16. V. R. GRAY, Chem. Ind. (1965) 969.

  17. Idem, Forest Product J. 12 (1962) 452.

    Google Scholar 

  18. M. CONNOR, S. TOLL and J.-A. E. MÅNSON, Compos. Manuf. 6 (1995) 289.

    Article  CAS  Google Scholar 

  19. J.-E. BIDAUX, G. D. SMITH, N. BERNET, J. HILBORN and J.-A. E. MÅNSON, Polymer 37 (1996) 1129.

    Article  CAS  Google Scholar 

  20. K. JUD, H. H. KAUSCH and J. G. WILLIAMS, J. Mater. Sci. 16 (1981) 204.

    Article  CAS  Google Scholar 

  21. J. C. BERG, in “Wettability”, edited by J. C. Berg (Dekker, New York 1993) p. 75.

    Google Scholar 

  22. A. DUPRÉ, “Théorie mécanique de la chaleur” (Gaitjoer- Villars, Paris. 1869).

    Google Scholar 

  23. T. YOUNG, Phil. Trans. 95 (1805) 82.

    Google Scholar 

  24. L. E. RARATY and D. TABOR, Proc. Roy. Soc. 245A (1958) 184.

    Google Scholar 

  25. M. LEVINE, G. ILKA and P. WEISS, J. Polym. Sci. Polym. Lett. Ed. B-2 (1964) 915.

    Google Scholar 

  26. M. J. BARBARIS, Nature 215 (1967) 383.

    Article  Google Scholar 

  27. M. NARDIN, E. M. ASLOUN and J. SCHULTZ, J. Polym. Adv. Technol. 2 (1991) 171.

    Article  CAS  Google Scholar 

  28. S. WU, “Polymer interfaces and adhesion” (Dekker, New York 1982) Ch. 11.

    Google Scholar 

  29. N. A. DE BRUYNE, Nature 10 (1957) 262.

    Google Scholar 

  30. K. L. MITTAL, Polym. Eng. Sci. 17 (1977) 467.

    Article  CAS  Google Scholar 

  31. A. W. NEUMANN, Staub-Reinhaltung der Luft 28 (1968) 24.

    Google Scholar 

  32. G. A. DYCKERHOFF and P.-J. SELL, Angew. Makromol. Chem. 21 (1972) 169.

    Article  CAS  Google Scholar 

  33. D. DRIEGGER, A. W. NEUMANN and P. J. SELL, Kolloid Z. u. Z. Polymere 201 (1965) 52.

    Article  Google Scholar 

  34. P. J. SELL and A. W. NEUMANN, Angew. Chem. 78 (1966) 321.

    CAS  Google Scholar 

  35. L. A. GIRIFALCO and R. J. GOOD, J. Phys. Chem. 61 (1957) 904.

    Article  CAS  Google Scholar 

  36. R. J. GOOD and E. ELBING, Ind. Eng. Chem. 62 (1970) 55.

    Article  Google Scholar 

  37. R. J. GOOD, “Contact angle, wettability, and adhesion”, Advances in Chemistry series, Vol. 43 (American Chemical Society, Washington, DC, 1964) p. 74.

    Google Scholar 

  38. Idem. in “Treatise on adhesion and adhesives” Vol. 1, edited by R. L. Patrick (Dekker, New York, 1967) p. 9.

    Google Scholar 

  39. Idem. in “Contact angle, wetting and adhesion”, edited by K. L. Mittal (VSP, Utrecht, 1993) p. 3.

    Google Scholar 

  40. M. CONNOR, P. H. HARDING, J. C. BERG and J.-A. E. MÅNSON, J. Adhesion Sci. Technol. 9 (1995) 983.

    CAS  Google Scholar 

  41. M. ASLOUN, Ph. D thesis, Université de Haute Alsace, France (1991).

  42. R. A. BUCHER and J. A. HINKLEY, J. Thermopl. Compos. Mater. 5 (1992) 3.

    Google Scholar 

  43. D. J. HODGE, B. A. MIDDLEMISS and J. A. PEACOCK, Mater. Res. Soc. Symp. Proc. 170 (1990) 327.

    CAS  Google Scholar 

  44. M. NARDIN, E. M. ASLOUN, F. MULLER and J. SCHULTZ, Polym. Adv. Technol. 2 (1991) 161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CONNOR, M., BIDAUX, JE. & MANSON, JA.E. A criterion for optimum adhesion applied to fibre reinforced composites. Journal of Materials Science 32, 5059–5067 (1997). https://doi.org/10.1023/A:1018657131178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018657131178

Keywords

Navigation