Skip to main content
Log in

Diffusional penetration during diffusion-induced grain-boundary migration process in an Al-Zn couple

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The existence of diffusion-induced grain-boundary migration (DIGM) has been re-examined by electron probe micro analysis and analytical electron microscopy in the aluminium substrate of Al-Zn diffusion couple annealed in the temperature range 395–535 K. The investigation revealed two basic kinds of DIGM: laminar and turbulent. The laminar kind occurs over the whole temperature range and is characterized by a small migration distance and large migration depth. The zinc enrichment at a sample surface is 4.0–5.0 wt% and gradually decreases with increasing depth. The turbulent kind is limited to annealing temperatures above 450 K. In this case, the width of the alloyed zone is much greater, close to the surface of sample and then dramatically decreases, showing a behaviour similar to the laminar morphology. The zinc content at the surface of sample is 8.0–9.0 wt%. The diffusivities of DIGM calculated based on Cahn's equation agree well with the values of stationary grain boundary in diluted AlZn alloys. Evidence for the existence of DIGM was the asymmetry of the zinc profile with regard to the final position of the boundary. Microanalytical scan across the alloyed zone showed an abrupt change of the zinc concentration at the moving boundary. This suggests that the role of volume diffusion during DIGM is not so important and a considerable chemical contribution to the total driving force should exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hillert and G. R. Purdy, Acta Metall. 26 (1978) 33.

    Article  Google Scholar 

  2. Li Chongmo and M. Hillert, ibid. 29 (1981) 1949.

    Article  CAS  Google Scholar 

  3. Z. S. Yu and P. G. Shewmon, Metall. Trans. 13A (1981) 1567.

    Google Scholar 

  4. P. G. Shewmon and Z. S. Yu, ibid. 14A (1983) 1579.

    Article  CAS  Google Scholar 

  5. G. Meyrick, V. S. Iyer and P. G. Shewmon, Acta Metall. 33 (1985) 273.

    Article  CAS  Google Scholar 

  6. V. S. Iyer, P. G. Shewmon and G. Meyrick, Scripts Metall. 20 (1986) 231.

    Article  CAS  Google Scholar 

  7. Li Chongmo and M. Hillert, Acta Metall. 30 (1982) 1133.

    Article  Google Scholar 

  8. J. W. Cahn, J. D. Pan and R. W. Baluffi, Scripta Metall. 13 (1979) 503.

    Article  CAS  Google Scholar 

  9. S. Mayer, PhD thesis, University of Stuttgart (1987).

  10. T. J. A. Den Droeder, Thin Solid Films 124 (1985) 135.

    Article  Google Scholar 

  11. F. S. Chen and A. H. King, Acta Metall. 36 (1988) 2827.

    Article  CAS  Google Scholar 

  12. Z. M. Guan, G. X. Liu, D. B. Williams and M. R. Notis, ibid. 37 (1989) 519.

    Article  CAS  Google Scholar 

  13. R. Schmelze, G. Giakupian, T. Muschik, W. Gust and R. A. Fournelle, Acta Metall. Mater. 40 (1992) 997.

    Article  Google Scholar 

  14. F. J. A. Den Broeder and S. Nakahara, Scripta Metall. 17 (1983) 399.

    Article  Google Scholar 

  15. D. Liu, W. A. Miller and K. T. Aust, Acta Metall. 37 (1989) 3367.

    Article  CAS  Google Scholar 

  16. C. R. M. Grovenor, ibid. 33 (1985) 579.

    Article  CAS  Google Scholar 

  17. V. N. Lapovak, V. I. Novikov, S. V. Svirida, A. N. Semenikhin and L. I. Trusov, Sov. Phys. Solid State 25 (1983) 1063.

    Google Scholar 

  18. C. R. M. Grovenor, D. A. Smith and M. J. Goringe, Thin Solid Films 74 (1980) 269

    Article  CAS  Google Scholar 

  19. K. Tashiro and G. R. Purdy, Scripta Metall. 21 (1983) 455.

    Article  Google Scholar 

  20. G. R. Purdy and K. Tashiro, in “Interface Migration and Control of Microstructure”, edited by D. A. Smith, A. H. King and C. S. Pande (American Soc. Metals, Metals Park, OH, 1986) p. 33.

    Google Scholar 

  21. S. Varadarajan and R. A. Fournelle, Acta Metall. Mater. 40 (1992) 1847.

    Article  CAS  Google Scholar 

  22. R. Lück, Z. Metallkde 66 (1975) 488.

    Google Scholar 

  23. G. Cliff and G. W. Lorimer, J. Microscopy 103 (1975) 203.

    Article  Google Scholar 

  24. J. W. Cahn, Acta Metall. 7 (1959) 18.

    Article  CAS  Google Scholar 

  25. A. H. King, Int. Mater. Rev. 32 (1987) 173.

    Article  CAS  Google Scholar 

  26. J. E. Hilliard, B. A. Averbach and M. Cohen, Acta Metall. 7 (1959) 86.

    Article  CAS  Google Scholar 

  27. R. W. Baluffi and J. W. Cahn, ibid. 29 (1981) 493.

    Article  Google Scholar 

  28. D. A. Smith and A. H. King, Philos. Mag. A44 (1981) 333.

    Article  Google Scholar 

  29. P. Zieba and A. Pawłowski, to be published in Mat. Sci. Eng. (1994).

  30. A. Pawłowski, P. Zięba and J. Morgiel, Arch. Metall. 31 (1986) 287.

    Google Scholar 

  31. P. Zięba, Arch. Metall. 36 (1991) 65.

    Google Scholar 

  32. A. Haessner, Kristall Technik 9 (1974) 1371.

    Article  CAS  Google Scholar 

  33. K. N. Tu and D. B. Turnbull, Scripta Metall. 1 (1967) 173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zieba, P., Pawłowski, A. Diffusional penetration during diffusion-induced grain-boundary migration process in an Al-Zn couple. JOURNAL OF MATERIALS SCIENCE 29, 6231–6240 (1994). https://doi.org/10.1007/BF00354565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354565

Keywords

Navigation