Skip to main content
Log in

Ventilation of the branchial chambers in the amphibious West African freshwater crab, Sudanonautes (Convexonautes) aubryi monodi (Balss, 1929) (Brachyura, Potamonautidae)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The anatomy of the respiratory system of the savanna-zone African freshwater crab, Sudanonautes (Convexonautes) aubryi monodi [Balss, 1929], has been examined and has been found to be adapted for both aerial and aquatic gas exchange. The activities of the scaphognathites and the directions of flow of the ventilatory stream have been recorded in stressed, active and resting specimens during their exposure to a wide range of conditions from deep water to dry land.

Ventilation of the branchial chambers during aquatic gas exchange in Sudanonautes kept in deep water is shown to consist of a rapid, predominantly forward water flow similar to that of fully-aquatic species. Ventilation of the branchial chambers during aerial gas exchange in Sudanonautes on land is shown to consist of a relatively slow forward air flow. This flow is continuous in post-operative crabs, pulsatile in active crabs and completely immobile in resting crabs.

A second method of ventilation of the branchial chambers during aerial gas exchange is shown to consist of a pulsatile reversed air flow. This occurs (1) when Sudanonautes is kept in very shallow water and active or stressed; (2) when it has recently moved on to land; and (3) when it is completely immersed and exhibiting aerial gas exchange under water. The unusual phenomenon of aerial gas exchange under water is reported here for the first time in any species of crab.

Bimodal ventilation of the branchial chambers occurs in stressed or active crabs partly immersed in shallow water. This consists of an alternation between forward water flow and reversed air flow.

The morphology of the branchial chambers in Sudanonautes, and observational data on the patterns of ventilation of the branchial chambers, are discussed in relation to those described for other air-breathing decapod crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansell, A. D., 1973. Changes in oxygen consumption, heart rate and ventilation accompanying starvation in the decapod crustacean, Cancer pagurus. Neth. J. Sea Res. 7: 455–475.

    Google Scholar 

  • Balss, H., 1929. Crustacea. 5. Potamonidae. In Th. Monod (ed.), Contribution à l'étude de la faune du Cameroun, Mission Monod 1925–1926, 2, Faune Col. Fr. 3: 115–129.

  • Batterton, C. V. & J. N. Cameron, 1978. Characteristics of resting ventilation and response to hypoxia, hypercapnia and emersion in the blue crab, Callinectes sapidus (Rathbun). J. exp. Zool. 203: 403–418.

    Google Scholar 

  • Beadle, L., 1981. The Inland Waters of Tropical Africa. An introduction to Tropical Limnology, 2nd. Ed. Longman, NY & Lond., 475 pp.

    Google Scholar 

  • Bliss, D. E., 1968. Transition from water to land in decapod crustaceans. Am. Zool. 8: 355–398.

    Google Scholar 

  • Bliss, D. E., 1979. From sea to tree: Saga of a land crab. Am. Zool. 19: 385–410.

    Google Scholar 

  • Cameron, J. N. & T. A. Mecklenberg, 1973. Aerial gas exchange in the coconut crab, Birgus latro with some notes on Gecarcoidea lalandii. Respir. Physiol. 19: 245–261.

    Google Scholar 

  • Cameron, J. N., 1975. Aerial gas exchange in the terrestrial Brachyura Gecarcinus lateralis and Cardiosoma quanhumi. Comp. Biochem. Physiol. A 52A: 129–134.

    Google Scholar 

  • Cumberlidge, N. & R. F. Uglow, 1977a. Heart and scaphognathite activity in the shore crab, Carcinus maenas (L.). J. exp. mar. Biol. Ecol. 28: 87–107.

    Google Scholar 

  • Cumberlidge, N. & R. F. Uglow, 1977b. Size, temperature and scaphognathite frequency-dependent variations of ventilation volumes in Carcinus maenas (L.). J. exp. mar. Biol. Ecol. 30: 85–93.

    Google Scholar 

  • Diaz, H. & G. Rodriguez, 1977. The branchial chamber in terrestrial crabs: a comparative study. Biol. Bull. 153: 485–504.

    Google Scholar 

  • Dyer, M. F. & Uglow, 1977. On a technique for monitoring heart and scaphognathite activity in Natantia. J. exp. mar. Biol. Ecol. 27: 117–124.

    Google Scholar 

  • Edney, E. B., 1960. Terrestrial adaptation. In T. H. Waterman (ed.) The Physiology of Crustacea, 1, Academic Press, NY: 376–388.

    Google Scholar 

  • Ege, R., 1915. On the respiratory function of the air stores carried by some aquatic insects (Corixidae, Dytiscidae and Notonecta). Z. allg. Physiol. 17: 81–124.

    Google Scholar 

  • Gray, I. E., 1957. A comparative study of the gill area of crabs. Biol. Bull. (Woods Hole, Mass.) 112: 34–42.

    Google Scholar 

  • Greenaway, P. & H. H. Taylor, 1976. Aerial gas exchange in Australian arid-zone crab, Parathelphusa transversa Von Martens. Nature (Lond.) 262: 711–713.

    Google Scholar 

  • Greenaway, P., J. Bonaventura & H. H. Taylor, 1983. Aquatic gas exchange in the freshwater/land crab Holthusiana transversa. J. exp. Biol. 103: 225–236.

    Google Scholar 

  • Greenaway, P., H. H. Taylor & J. Bonaventura 1983. Aerial gas exchange in Australian freshwater/land crabs of the genus Holthusiana. J. exp. Biol. 103: 237–251.

    Google Scholar 

  • Hughes, G. M., B. Knights & C. A. Scammell, 1969. The distribution of P02 and hydrostatic pressure changes within the branchial chambers of the shore crab Carcinus maenas J. exp. Biol. 51: 203–220.

    Google Scholar 

  • Larimer, J. L., 1964. Sensory-induced modifications of ventilation and heart rate in crayfish. Comp. Biochem. Physiol. 12: 23–36

    Google Scholar 

  • Lenfant, C., K. Johansen & D. Hanson, 1970. Bimodal gas exchange and ventilation perfusion relationships in lower vertebrates. Fed. Proc. 29: 1124–1129.

    Google Scholar 

  • Lutz, P. L., 1969. Salt and water balance in the West African fresh-water/land crab Sudanonautes africanus africanus and the effects of desiccation. Comp. Biochem. Physiol. 30: 469–480.

    Google Scholar 

  • Mantel, L. H. & L. Farmer, 1983. Osmotic and Ionic Regulation. In L. H. Mantel (ed.), The Biology of Crustacea, 5, Academic Press, NY: 54–143.

    Google Scholar 

  • McDonald, D. G., B.R. McMahon & C. M. Wood, 1977. Patterns of heart and scaphognathite activity in the crab Cancer magister. J. exp. Zool. 202: 33–44.

    Google Scholar 

  • McMahon, B. R. & J. L. Wilkens, 1977. Periodic respiratory and circulatory performance in the red rock crab, Cancer productus. J. exp. Biol. 202: 363–374.

    Google Scholar 

  • McMahon, B. R., F. Sinclair, C. D. Hassal, P. L. de Fur & P. R. H. Wilkes, 1978. Ventilation and control of acid-base status during temperature acclimation in the crab Cancer magister Comp. Biochem. Physiol. 128B: 109–116.

    Google Scholar 

  • McMahon, B. R. & W. W. Burggren, 1979. Respiration and adaptation to the terrestrial habitat in the land hermit crab Coenobita clypeatus. J. exp. Biol. 79: 285–291.

    Google Scholar 

  • McMahon, B. R. & J. L. Wilkens, 1983. Ventilation, Perfusion and Oxygen Uptake. In L. H. Mantel (ed.), The Biology of Crustacea, 5, Academic Press, NY: 289–372.

    Google Scholar 

  • Millar, P. L., 1964. The possible role of haemoglobin in Anisops and Buenoa (Hemiptera: Notonectidae). Proc. r. entomol. Soc. Lond. A39: 166–175.

    Google Scholar 

  • Powers, L. W. & D. E. Bliss, 1983. Terrestrial Adaptations. In F. J. Vernberg & W. B. Vernberg (eds.), The Biology of the Crustacea, 8, Academic Press, NY: 271–323.

    Google Scholar 

  • Taylor, A. C., 1976. The respiratory responses of Carcinus maenas to declining oxygen tension. J. exp. Biol. 63: 673–678.

    Google Scholar 

  • Taylor, E. W., P. J. Butler & P. J. Sherlock, 1973. The respiratory and cardiovascular changes associated with the emersion response of Carcinus maenas L. during environmental hypoxia, at three different temperatures. J. comp. Physiol. 86: 95–115.

    Google Scholar 

  • Taylor, E. W. & P. J. Butler, 1978. Aquatic and aerial respiration in the shore crab Carcinus maenas (L.), acclimated to 15°C. J. comp. Physiol. 127: 315–323.

    Google Scholar 

  • Taylor, H. H. & P. Greenaway, 1979. The structure of the gills and lungs of the arid-zone crab Holthusiana (Australotelphusa) transversa (Brachyura: Sundathelphusidae) including observations on arterial vessels within the gills. J. Zool. Lond. 189: 359–384.

    Google Scholar 

  • Thorpe, W. H. & D. J. Crisp, 1947. Studies on plastron respiration. 1. The biology of Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae) and the mechanism of plastron retention). J. exp. Biol. 24: 227–269.

    Google Scholar 

  • Uglow, R. F., 1973. Some effects of acute oxygen changes on heart and scaphognathite activity in some portunid crabs. Neth. J. Sea Res. 7: 447–454.

    Google Scholar 

  • Valente, D., 1949. Mecanismo da respiraoao Trichodactylus petropolitanus (Goeldi). Bul. Fac. Filos. Cienc. Let. Univ. Sao Paulo Ser. Zool. 13: 284–316.

    Google Scholar 

  • Voelker, J. & R. Sachs, 1977. Uber die Verbreitung von Lungenegeln (Paragonimus africanus und P. uterobilateralis) in West-Kamerun und Ost Nigeria auf Grund von Untersuchungen auf Süsswasserkrabben auf Befall mit Metacercarien. Tropenmed. Parasitol. 28: 120–133.

    Google Scholar 

  • Warner, G. F., 1977. ‘The Biology of Crabs’. Elek Ltd., Lond. 202 pp.

    Google Scholar 

  • Wheatly, M. G. & E. W. Taylor, 1979. Oxygen levels, acid-base status and heart rate during emersion of the shore crab Carcinus maenas (L.) into air. J. Comp. Physiol. 132B: 305–311.

    Google Scholar 

  • Wolvekamp, H. P. & T. H. Waterman, 1960. Respiration. In T. H. Waterman (ed.), Physiology of Crustacea, 1, Academic Press, NY: 35–100.

    Google Scholar 

  • Zoond, A. & E. Charles, 1931. Studies in the localisation of respiratory exchange in invertebrates, 1. The respiratory mechanism of the fresh-water crab, Potamonautes. J. exp. Biol. 8: 250–257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumberlidge, N. Ventilation of the branchial chambers in the amphibious West African freshwater crab, Sudanonautes (Convexonautes) aubryi monodi (Balss, 1929) (Brachyura, Potamonautidae). Hydrobiologia 134, 53–65 (1986). https://doi.org/10.1007/BF00008699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008699

Keywords

Navigation