Skip to main content
Log in

Stress and strain distributions around cracks in sheet materials having various work-hardening characteristics

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

The stress and strain distributions around cracks in sheet materials having various work-hardening characieristics are obtained for uniaxial loading. The strains in the plastic region at the crack tip tend to vary inversely as the distance from the crack. Expressions are derived for the energy absorbed in plastic deformation during both static and cyclic loadings.

Résumé

On a déterminé les répartitions des tensions et des déformations au voisinage de fissures dans des tôles a caractéristiques diverses d'écrouissage, pour le cas de traction uniaxiale. Les déformations dans la région plastique a la pointe de la fissure varient approximativement en raison inverse de la distance de la fissure. On a dérivé des expressions pour l'énergie dissipée en déformation plastique pour les sollicitations tant statiques que cycliques.

Zusammenfassung

Es werden bei einachsiger Zugbeanspruchung die Spannungs — und Verformungsverteilungen bei Anrissen in Blechen aus Werkstoffen mi.t verschiedenen V erfestigungseigenschaften festgestellt. Die Verformungen im plastischen Gebiet an der Anrisspitze verändern sich etwa umgekehrt mit deco Abstand vom Anriss. Es werden Ausdrücke abgeleitet fur die durch plastische Verformung bei statischer bzw. schwellender Beanspruchung aufgenommene Arbeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2b:

Sheet width

E:

Modulus of elasticity

Es,E s :

Secant moduli

G:

Elastic shear modulus

k:

Yield stress in shear

L:

Applied stress across uncracked section

l:

Half-crack length, crack length = 21

r:

Polar co-ordinate

rp :

Distance of elastic-plastic boundary from crack tip on loading

rpr :

Distance of reversed plastic boundary from crack tip on unloading

s:

Length of plastic region ahead of crack tip = (rpr)θ=0

s′:

Lenght of reversed plastic region ahead of crack tip = (rpr)θ=0

T:

Maximum applied stress across uncracked section

t:

Thickness of sheet

U:

Tensile strength

Vp :

Total energy absorbed in plastic deformation per cycle, during cyclic loading

vp :

Plastic energy density per cycle, during cyclic loading

W:

Total energy of deformation during static loading

w:

Strain energy density during static loading

x, y:

Cartesian co-ordinates

Y:

Yield stress in tension

Z:

Parameter associated with yield in compression

γ:

Maximum shear strain = ε1 − ε2

γLP :

Shear strain at limit of proportionality

γxy :

Shear strain

γ0.1 :

Shear strain at 0.1 per cent proof stress

Δ:

Denotes an increment during unloading

References

  1. J.R.Dixon and W.Visser Proc. Intl. Symp. on Photoelasticity, Chicago, 1961, Pergamon Press, London, 1963, pp.231–250.

    Google Scholar 

  2. J.R.Dixon and J.S.Strannigan J. Mech. Engr. Sci., 6, 2, 1964, pp.132–136.

    Google Scholar 

  3. J.R.Dixon and J.S.Strannigan J. Mech. Engr. Sci., 7, 3, 1965, pp.312–317.

    Google Scholar 

  4. J.R.Dixon J. Roy. Aero. Soc., 64, 591, 1960, pp.141–145.

    Google Scholar 

  5. J.R.Dixon J. Roy. Aero. Soc., 66, 617, 1962, pp.320–322.

    Google Scholar 

  6. C.E.InglisTrans. Instn. Nav. Archit., 55, 1, 1913, pp.219–239.

    Google Scholar 

  7. G.V.Uzhik 9th Intl. Congress Appl. Mech.,8, 1956, pp.299–311.

    Google Scholar 

  8. H.Neuber Kerbspannungslehre (Theory of Notch Stresses), Springer-Verlag, Berlin, 1958.

    Google Scholar 

  9. G.R.Irwin “Fracture Testing of High Strength Sheet Materials under Conditions Appropriate for Stress Analysis, ”NRL Report 5486, U. S. Naval Research Laboratory, Washington, D.C., 1960.

    Google Scholar 

  10. N.E.Frost and J.R.Dixon “A Theory of Fatigue Crack Growth, ” NEL Report (to be published), National Engineering Laboratory, Glasgow, Scotland.

  11. W.W.Gerberich Experimental Mechanics, 4, 4, 1964, pp.335–344.

    Google Scholar 

  12. D.A.Bateman, F.J.Bradshaw, and D.P.Rooke “Some Observations on surface Deformation Round Cracks in Stressed Sheets,” RAE Technical Note CPM 63, Royal Aircraft Establishment, Farnborough, Hants, England, 1964.

    Google Scholar 

  13. J.A.H.Hult and F.A.McClintock 9th Intl. Congress Appl. Mech., 8, 1956, pp.51–58.

    Google Scholar 

  14. M.L.Williams Proc. Crack Propagation Symp., 1, 1961, Cranfield, College of Aeronautics, pp.130–165.

    Google Scholar 

  15. H.W.Liu J. Basic Engr., 85, 1, 1963, pp.116–122.

    Google Scholar 

  16. L.M.Stimpson and D.M.Eaton “The Extent of Elasto-Plastic Yielding at the Crack Point of an Externally Notched Plane Stress Tensile Specimen.” GALCIT SM 60–10, California Institute of Technology, Pasadena, California, 1961.

    Google Scholar 

  17. J.A.Jacobs Phil. Mag., 41, 315, 1950, pp.349–361.

    Google Scholar 

  18. A.H.S.Ang and G.N.Harper Proc. Arn. Soc. Civ. Engrs., 90, EM5, 1964, pp.397–418.

    Google Scholar 

  19. D.S.Dugdale J. Mech. Phys. Solids, 8, 2, 1960, pp.100–104.

    Google Scholar 

  20. W.Ramberg and W.R.Osgood “Description of Stress-Strain Curves by Three Parameters,” NAGA Report TN 902, National Advisory Committee for Aeronautics, New York, 1943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, J.R. Stress and strain distributions around cracks in sheet materials having various work-hardening characteristics. Int J Fract 1, 224–244 (1965). https://doi.org/10.1007/BF00186858

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186858

Keywords

Navigation