Skip to main content
Log in

Identification of cellulose synthase(s) in higher plants: sequence analysis of processive β-glycosyltransferases with the common motif ’D, D, D35Q(R,Q)XRW‘

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

More than ten β-glycosyltransferases are now recognized that have limited similarity to the amino acid sequence of cellulose synthase from Acetobacter xylinum. Using hydrophobic cluster analysis (HCA), we recently identified two domains and putative catalytic residues in the processive β-glycosyltransferases. In this study, we have found expressed sequence tags (ESTs) from higher plants (Arabidopsis thaliana, Brassica campestris, and Oryza sativa) that exhibit a limited sequence similarity to the A. xylinum cellulose synthase. These ESTs contain some of the conserved residues identified in the processive β-glycosyltransferases. Complete sequencing of an EST clone (T88271) from A. thaliana led to the identification of all the conserved residues in the derived truncated polypeptide which appears to be part of a putative cellulose synthase. Sequence comparison of proteins with known function and several unidentified proteins have the ‘D, D, D35Q(R,Q)XRW’ motif which is considered a strong predictor for β-glycosyltransferasesthat includes, among other proteins, cellulose and chitin synthases. The first two conserved aspartic acid residues in this motif were analysed by site-directed mutagenesis, and their replacement by another amino acid led to a loss of cellulose synthase activity in A. xylinum, suggesting that they are essential for enzyme activity. A correlation between the second residue (R or Q) in the Q(R,Q)XRW sequence and the synthesis of along glucan chain (polysaccharide) or a short glucan chain(oligosaccharide) suggests that this residue may be involved in the degree of processivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  Google Scholar 

  • Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M. and Delmer, D. P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92, 9353–9357.

    Article  CAS  Google Scholar 

  • Andrawis, A., Solomon, M. and Delmer, D. P. (1993) Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J. 3, 763–772.

    Article  CAS  Google Scholar 

  • Brown, R. M., Jr., Saxena, I. M. and Kudlicka, K. (1996) Cellulose biosynthesis in higher plants. Trends in Plant Sciences 1, 149–156.

    Article  Google Scholar 

  • Chen, H. P. and Brown, R. M., Jr. (1996) Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3, 63–75.

    Article  Google Scholar 

  • Delmer, D. P. and Amor, Y. (1995) Cellulose biosynthesis. Plant Cell 7, 987–1000.

    Article  CAS  Google Scholar 

  • Dhugga, K. S. and Ray, P. M. (1995) Plant cell wall synthesis: molecular cloning of putative •-glucan synthase genes from pea. Plant Physiol (suppl) 108, 51.

    Google Scholar 

  • Ditta, G., Schmidhauser, T., Yakobson, E., Lu, P., Liang, X., Finlay, D. R., Guiney, D. and Helinski, D. R. (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13, 149–153.

    Article  CAS  Google Scholar 

  • Frey, P. A. (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10, 461–470.

    CAS  Google Scholar 

  • Geremia, R. A., Mergaert, P., Geelen, D., Van Montagu, M. and Holsters, M. (1994) The NodC protein of Azorhizobium caulinodansis an N-acetylglucosaminyl transferase. Proc. Natl. Acad. Sci. USA 91, 2669–2673.

    Article  CAS  Google Scholar 

  • Glucksmann, M. A., Reuber, T. L. and Walker, G. C. (1993) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J. Bacteriol. 175, 7033–7044.

    CAS  Google Scholar 

  • Griffin, A. M., Morris, V. J. and Gasson, M. J. (1996) Identification, cloning and sequencing the aceAgene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Letters 137, 115–121.

    Google Scholar 

  • Holm, L. and Sander, C. (1995) Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme. EMBO J. 14, 1287–1293.

    CAS  Google Scholar 

  • Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.

    Article  CAS  Google Scholar 

  • Kunkel, T. A., Roberts, J. D. and Zabour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382.

    Article  CAS  Google Scholar 

  • Lin, F. C. and Brown, R. M., Jr. (1989) Purification of cellulose synthase from Acetobacter xylinum. In Cellulose and Wood-Chemistry and Technology, (C. Scheurch, ed.). New York: Wiley Interscience, pp. 473–492.

  • Mayer, R., Ross, P., Weinhouse, H., Amikam, D., Volman, G., Ohana, P., Calhoon, R. D., Wong, H. C., Emerick, A. W. and Benziman, M. (1991) Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc. Natl. Acad. Sci. USA 88, 5472–5476.

    Article  CAS  Google Scholar 

  • Nagahashi, S., Sudoh, M., Ono, N., Sawada, R., Yamaguchi, E., Uchida, Y., Mio, T., Takagi, M., Arisawa, M. and Yamada-Okabe, H. (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. J. Biol. Chem. 270, 13961–13967.

    Article  CAS  Google Scholar 

  • Newman, T., de Bruijn, F. J., Green, P., Keegstra, K., Kende, H., McIntosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashow, M., Retzel, E. and Somerville, C. (1994) Genes galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous ArabidopsiscDNA clones. Plant Physiol. 106, 1241–1255.

    Article  CAS  Google Scholar 

  • Qi, X., Tai, C.-Y. and Wasserman, B. P. (1995) Plasma membrane intrinsic proteins of Beta vulgarisL}. Plant Physiol. 108, 387–392.

    Article  CAS  Google Scholar 

  • Saxena, I. M. and Brown, R. M., Jr. (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum . J. Bacteriol. 177, 5276–5283.

    CAS  Google Scholar 

  • Saxena, I. M., Lin, F. C. and Brown, R. M. Jr. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol. 15, 673–683.

    Article  CAS  Google Scholar 

  • Saxena, I. M., Kudlicka, K., Okuda, K. and Brown, R. M., Jr. (1994) Characterization of genes in the cellulose-synthesizing operon (acsoperon) of Acetobacter xylinum: Implications for cellulose crystallization. J. Bacteriol. 176, 5735–5752.

    CAS  Google Scholar 

  • Saxena, I. M., Brown, R. M., Jr., Fevre, M., Geremia, R. A. and Henrissat, B. (1995) Multidomain architecture of •-glycosyl transferases: Implications for mechanism of action. J. Bacteriol. 177, 1419–1424.

    CAS  Google Scholar 

  • Semino, C. E. and Robbins, P. W. (1995) Synthesis of ‘Nod’-like chitin oligosaccharides by the Xenopusdevelopmental protein DG42. Proc. Natl. Acad. Sci. USA 92, 3498–3501.

    Article  CAS  Google Scholar 

  • Shin, H., Kudlicka, K. and Brown, R. M., Jr. (1995) A biochemical study of •-glucan synthesis in the cotton fiber. Plant Physiol. (suppl) 108, 68.

    Google Scholar 

  • Sofia, H. J., Burland, V., Daniels, D. L., Plunkett, G. III, and Blattner, F. R. (1994) Analysis of the Escherichia coligenome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 22, 2576–2586.

    CAS  Google Scholar 

  • Varner, J. E. (1995) Foreword: 101 reasons to learn more plant biochemistry. Plant Cell 7, 795–796.

    Article  CAS  Google Scholar 

  • Vrielink, A., Rüger, W., Driessen, H. P. C. and Freemont, P. S. (1994) Crystal structure of the DNA modifying enzyme •-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422.

    CAS  Google Scholar 

  • Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W., Bruner, R., Ben-Bassat, B. A. and Tal, R. (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87, 8130–8134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SAXENA, I.M., BROWN, R.M. Identification of cellulose synthase(s) in higher plants: sequence analysis of processive β-glycosyltransferases with the common motif ’D, D, D35Q(R,Q)XRW‘. Cellulose 4, 33–49 (1997). https://doi.org/10.1023/A:1018411101036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018411101036

Navigation