Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on the composition of the Earth's core from ab initio calculations

Abstract

Knowledge of the composition of the Earth's core1,2,3 is important for understanding its melting point and therefore the temperature at the inner-core boundary and the temperature profile of the core and mantle. In addition, the partitioning of light elements between solid and liquid, as the outer core freezes at the inner-core boundary, is believed to drive compositional convection4, which in turn generates the Earth's magnetic field. It is generally accepted that the liquid outer core and the solid inner core consist mainly of iron1. The outer core, however, is also thought to contain a significant fraction of light elements, because its density—as deduced from seismological data and other measurements—is 6–10 per cent less than that estimated for pure liquid iron1,2,3. Similar evidence indicates a smaller but still appreciable fraction of light elements in the inner core5,6. The leading candidates for the light elements present in the core are sulphur, oxygen and silicon3. Here we obtain a constraint on core composition derived from ab initio calculation of the chemical potentials of light elements dissolved in solid and liquid iron. We present results for the case of sulphur, which provide strong evidence against the proposal that the outer core is close to being a binary iron–sulphur mixture7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Birch, F. Density and composition of mantle and core. J. Geophys. Res. 69, 4377–4388 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Ringwood, A. E. Composition of the core and implications for the origin of the Earth. Geochem. J. 11, 111–135 (1977).

    Article  CAS  Google Scholar 

  3. Poirier, J. P. Light elements in the Earth's outer core: a critical review. Phys. Earth Planet. Inter. 85, 319–337 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Loper, D E. The gravitationally powered dynamo. Geophys. J. R. Astron. Soc. 54, 389–404 (1978).

    Article  ADS  Google Scholar 

  5. Jephcoat, A. & Olson, P. Is the inner core of the Earth pure iron? Nature 325, 332–335 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Stixrude, L., Wasserman, E. & Cohen, R. E. Composition and temperature of the Earth's inner core. J. Geophys. Res. 102, 24729–24739 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Rama Murthy, V. & Hall, H. T. The chemical composition of the Earth's core: possibility of sulfur in the core. Phys. Earth Planet. Inter. 2, 276–282 (1970).

    Article  ADS  Google Scholar 

  8. Atkins, P. W. Physical Chemistry Ch. 7 (Oxford University Press, 1994).

    Google Scholar 

  9. Boehler, R. Fe-FeS eutectic temperatures to 620 kbar. Phys. Earth Planet. Inter. 96, 181–186 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Masters, T. G. & Shearer, P. M. Summary of seismological constraints on the structure of the earth's core. J. Geophys. Res. 95, 21691–21695 (1990).

    Article  ADS  Google Scholar 

  11. Alfè, D. & Gillan, M. J. First-principles simulation of liquid Fe-S under Earth's core conditions. Phys. Rev. B 58, 8248–8256 (1990).

    Article  ADS  Google Scholar 

  12. Alfè, D., Price, G. D. & Gillan, M. J. Oxygen in the Earth's core: A first-principles study. Phys. Earth Planet. Inter. 110, 191–210 (1999).

    Article  ADS  Google Scholar 

  13. Alfè, D., Kresse, G. & Gillan, M. J. Structure and dynamics of liquid iron under Earth's core conditions. Phys. Rev. B 61, 132–142 (2000).

    Article  ADS  Google Scholar 

  14. Ahrens, T. J. Equations of state of iron sulfide and constraints on the sulfur content of the Earth. J. Geophys. Res. 84, 985–998 (1979).

    Article  ADS  CAS  Google Scholar 

  15. de Wijs, G. A., Kresse, G. & Gillan, M. J. First-order phase transitions by first-principles free-energy calculations: The melting of A1. Phys. Rev. B 57, 8223–8334 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Alfè, D., Gillan, M. J. & Price, G. D. The melting curve of iron at the pressures of the Earth's core from ab initio calculations. Nature 401, 462–464 (1999).

    Article  ADS  Google Scholar 

  17. Alfè, D., Gillan, M. J. & Price, G. D. Thermodynamics of hexagonal-close-packed iron under Earth's core conditions. Phys. Rev. B (submitted).

  18. Alfè, D., de Wijs, G. A., Kresse, G. & Gillan, M. J. Recent developments in ab-initio thermodynamics. Int. J. Quant. Chem. 77, 871–879 (2000).

    Article  Google Scholar 

  19. Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculations of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kresse, G., Furthmüller, J. & Hafner, J. Ab initio force-constant approach to phonon dispersion relations of diamond and graphite. Europhys. Lett. 32, 729–734 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Chandler, D. Introduction to Modern Statistical Mechanics (Oxford University Press, 1987).

    Google Scholar 

  22. Frenkel, D. & Smit, B. Understanding Molecular Simulation Ch. 4 (Academic, New York, 1987).

    MATH  Google Scholar 

  23. Sugino, O. & Car, R. Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. Phys. Rev. Lett. 74, 1823–1826 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Voc̆adlo, L., Brodholt, J., Alfè, D., Price, G. D. & Gillan, M. J. The structure of iron under the conditions of the Earth's inner core. Geophys. Res. Lett. 26, 1231–1234 (1999).

    Article  ADS  Google Scholar 

  26. Usselman, T. M. Experimental approach to the state of the core: part I. The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kb. Am. J. Sci. 275, 278–290 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Hammond, B. L., Lester, W. A. Jr & Reynolds, P. J. Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  28. Rajagopal, G., Needs, R. J., James, A., Kenny, S. D. & Foulkes, W. M. C. Variational and diffusion quantum Monte Carlo calculations at nonzero wave vectors: Theory and applications to diamond-structure germanium. Phys. Rev. B 51, 10591–10600 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Kent, P. R. C. et al. Finite-size errors in quantum many-body simulations of extended systems. Phys. Rev. B 59, 1917–1929 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Kilburn, M. R. & Wood, B. J. Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–148 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The calculations were performed using the NERC-supported Cray T3E machines at the Manchester CSAR Centre and at the Edinburgh Parallel Computer Centre, and the UCL HiPerSPACE Centre. Support from the NERC and discussions with L. Voc̆adlo are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alfè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfè, D., Gillan, M. & Price, G. Constraints on the composition of the Earth's core from ab initio calculations. Nature 405, 172–175 (2000). https://doi.org/10.1038/35012056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012056

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing