Skip to main content
Log in

Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 μmol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 μmol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antranikian G, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152:1284–1287

    Google Scholar 

  • Bergmeyer HU (1983) Methods of enzymatic analysis, vol II. Verlag Chemie, Weinheim

    Google Scholar 

  • Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 5:419–422

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Google Scholar 

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. Arch Microbiol 136:230–233

    Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141:392–398

    Google Scholar 

  • Guynn RW, Veech RL (1973) The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. J Biol Chem 248:6966–6972

    Google Scholar 

  • Guynn RW, Gelberg HJ, Veech RL (1973) Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J Biol Chem 248:6957–6965

    Google Scholar 

  • Inoue H, Suzuki F, Tanioka H, Takeda Y (1968) Studies on ATP citrate lyase of rat liver. J Biochem 63:89–100

    Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128:239–241

    Google Scholar 

  • Möllering H (1985) Citrate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol VII. Verlag Chemie, Weinheim, pp 2–12

    Google Scholar 

  • Möllering H, Gruber W (1966) Determination of citrate with citrate lyase. Anal Biochem 17:369–376

    Google Scholar 

  • Paulsen J, Kröger A, Thauer RK (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144:78–83

    Google Scholar 

  • Pfitzner A, Kubicek CP, Röhr M (1987) Presence and regulation of ATP:citrate lyase from the citric acid producing fungus Aspergillus niger. Arch Microbiol 147:88–91

    Google Scholar 

  • Plowman KM, Cleland WW (1967) Purification and kinetic studies of the citrate cleavage enzyme. J Biol Chem 242:4239–4247

    Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. Enzymes of the reductive citric acid cycle in autotrophic Desulfobacter hydrogenophilus. Arch Microbiol (in press)

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol 141:198–203

    Google Scholar 

  • Spector LB (1972) Citrate cleavage and related enzymes. In: Boyer PD (ed) The enzymes, vol VII. Academic Press, New York London, pp 357–389

    Google Scholar 

  • Srere PA (1959) The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem 234:2544–2547

    Google Scholar 

  • Srere PA (1975) The enzymology of the formation and breakdown of citrate. In: Meister A (ed) Advances in enzymology, vol 43. John Wiley & Sons, New York London Sydney Toronto, pp 57–101

    Google Scholar 

  • Srere PA, Brazil H, Gonen L (1963) The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem Scand 17:129–134

    Google Scholar 

  • Stern JR, Ochoa S, Lynen F (1952) Enzymatic synthesis of citric acid V. Reaction of acetyl coenzyme A. J Biol Chem 198:313–321

    Google Scholar 

  • Stiggall DL, Galante YM, Hatefi Y (1979) Preparation and properties of complex V. In: Fleischer S (ed) Methods in enzymology, vol LV. Academic Press, New York San Franzisco London, pp 308–315

    Google Scholar 

  • Stille W, Trüper HG (1984) Adenylylsulfate reductase in some new sulfate-reducing bacteria. Arch Microbiol 137:145–150

    Google Scholar 

  • Takahashi H (1954) Nippon Nôgei-Kagaku Kaishi 28:534; (1958) Chem Abstr. 52:20378

    Google Scholar 

  • Takeda Y, Suzuki F, Inoue H (1969) ATP citrate lyase (citratecleavage enzyme). In: Lowenstein JM (ed) Methods in enzymology, vol XIII. Academic Press, New York San Francisco London, pp 153–160

    Google Scholar 

  • Thauer RK (1982) Dissimilatory sulphate reduction with acetate as electron donor. Phil Trans R Soc Lond B 298:467–471

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Vogel G, Steinhart R (1976) ATPase of Escherichia coli: Purification, dissociation, and reconstitution of the active complex from the isolated subunits. Biochemistry 15:208–216

    Google Scholar 

  • Weitzman PDJ (1981) Unity and diversity in some bacterial citric acid-cycle enzymes. In: Rose AH, Morris JG (eds) Advances in microbial physiology, vol 22. Academic Press, London New York Toronto Sydney San Francisco, pp 185–244

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, Göttingen

  • Widdel F (1987) Microbiology and ecology of sulfate- and sulfureducing bacteria. In: Zehnder AJB (ed) Environmental microbiology of anaerobes chapt 10. John Wiley & Sons, New York London (in press)

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, D., Schauder, R., Fuchs, G. et al. Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch. Microbiol. 148, 202–207 (1987). https://doi.org/10.1007/BF00414812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414812

Key words

Navigation