Skip to main content
Log in

Hot pressing of polycrystals of high-pressure phases of mantle minerals in multi-anvil apparatus

  • Acoustic Studies of the Elasticity and Equation of State of Minerals
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

In the 1960s, E. Schreiber and his colleagues pioneered the use of hot-pressed polycrystalline aggregates for studies of the pressure and temperature dependence of the elastic wave velocities in minerals. We have extended this work to the high-pressure polymorphs of mantle minerals by developing techniques to fabricate large polycrystalline specimens in a 2000-ton uniaxial split-sphere apparatus. A new cell assembly has been developed to extend this capability to pressures of 20 GPa and temperatures of 1700°C. Key elements in the new experimental design include: a telescopic LaCrO3 forT>1200°C; Toshiba Tungaloy grade F tungsten carbide anvils; and the use of homogeneous glasses or seeded powder mixtures as starting material to enhance reactivity and maximize densities. Cell temperatures are linearly related to electrical power to 1700°C and uniform throughout the 3 mm specimens. Pressure calibrations at 25°C and 1700°C are identical to 15 GPa. Cylindrical specimens of the beta and spinel phases of Mg2SiO4, stishovite (SiO2-rutile), and majorite-pyrope garnets have been synthesized within their stability fields in runs of 1–4 hr duration and recovered at ambient conditions by simultaneously decompressing and cooling along a computer-controlledP-T path designed to preserve the high-pressure phase and to relax intergranualar stress in the polycrystalline aggregate. These specimens are single-phased, fine-grained (<5 micron), free of microcracks and preferred orientation, and have bulk densities greater than 99% of X-ray density. The successful fabrication of these high-quality polycrystalline specimens has made possible experiments to determine the pressure dependence of acoustic velocities in the ultrasonics laboratory of S. M. Rigden and I. Jackson at the Australian National University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O. L., andAndreatch, P. (1966),Pressure Derivatives of Elastic Constants of Single Crystal MgO at 23 and −195°C, J. Am. Ceram. Soc.49, 404–408.

    Google Scholar 

  • Anderson, O. L., andSchreiber, E. (1965),The Pressure Derivatives of the Sound Velocities of Polycrystalline Magnesia, J. Geophys. Res.70, 5241–5248.

    Google Scholar 

  • Birch, F. (1960),The Velocity of Compressional Waves in Rocks of 10 Kilobars, J. Geophys. Res.65, 1083–1102.

    Google Scholar 

  • Birch, F. (1961),The Velocity of Compressional Waves in Rocks to 10 Kilobars, J. Geophys. Res.66, 2199–2224.

    Google Scholar 

  • Block, S. (1978),Round-robin Study of the Phase Transformation in ZnS, Acta Cryst.A 34, Suppl 316.

  • Christensen, N. I. (1974),Compressional Wave Velocities in Possible Mantle Rocks to Pressures of 30 Kilobars, J. Geophys. Res.79, 407–412.

    Google Scholar 

  • Gasparik, T. (1989),Transformation of Enstatite-diopside-jadeite Pyroxene to Garnet, Contri. Mineral Petrol.102, 389–405.

    Google Scholar 

  • Gasparik, T. (1992),Melting Experiments on the Enstatite-pyrope Join at 80–152 kbar, J. Geophys. Res.97, 15181–15188.

    Google Scholar 

  • Getting, I. C., Chen, G., andBrown, J. A. (1993),The Strength and Rheology of Commerical Grade Tungsten Carbide Cermets Used in High-pressure Apparatus, Pure and Appl. Geophys, this issue.

  • Graham, E. K. Jr., andBarsch, G. R. (1969),Elastic Constants of Single-crystal Forsterite as a Function of Temperature and Pressure, J. Geophys. Res.74, 5949–5960.

    Google Scholar 

  • Guillope, M., andPoirier, J. P. (1979),Dynamic Recrystallization during Creep of Single-crystalline Halite: An Experimental Study, J. Geophys. Res.84, 5557–5567.

    Google Scholar 

  • Gwamesia, G. D. (1987),Pressure Calibrations in a Girdle-anvil and a DIA-type High-pressure Apparati at Room Temperature (25°) and High Temperature (1000°), M. S. Thesis, State University of New York at Stony Brook.

  • Gwanmesia, G. D. (1991), High-pressure Elasticity for the Beta and Spinel Polymorphs of Mg2SiO4 and Composition of the Transition Zone of the Earth's Mantle, Ph.D. Thesis, State University of New York at Stony Brook.

  • Gwanmesia, G. D., Liebermann, R. C., andGuyot, F. (199a), Hot-pressing and Characterization of Polycrystals of Beta-Mg2SiO4 for Acoustic Velocity Measurements, Geophys. Res. Lett.17, 1331–1334.

    Google Scholar 

  • Gwanmesia, G. D., Rigden, S. M., Jackson, I., andLiebermann, R. C. (1990b), Pressure Dependence of Elastic Wave Velocity for Beta-Mg2SiO4 and the Composition of the Earth's Mantle, Science250, 794–797

    Google Scholar 

  • Gwanmesia, G. D., andLiebermann, R. C.,Polycrystals of high-pressure phases of mantle minerals: Hot-pressing and characterization of physical properties. InHigh Pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y. and Manghnani, M.) (Terra Scientific Publishing Co., and American Geophysical Union, Tokyo and Washington, D.C. 1992) pp. 117–135.

    Google Scholar 

  • Kanzaki, M. (1991),Ortho-clinoenstatite Transition, Phys. Chem. Minerals17, 726–730.

    Google Scholar 

  • Katsura, T., andIto, E. (1989), The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures: Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel, J. Geophys. Res.94, 15663–15670.

    Google Scholar 

  • Kumazawa, M., andAnderson, O. L. (1969),Elastic Moduli, Pressure Derivatives, and Temperature Derivatives of Single-crystal Olivine and Single-crystal Forsterite, J. Geophys. Res.74, 5961–5972.

    Google Scholar 

  • Kusaba, K., Galoisy, L., Wang, Y., Vaughan, M. T., andWeidner, D. J. (1993),Determination of Phase Transition Pressure of ZnTe under Quasihydrostatic Conditions, Pure and Appl. Geophys, this issue.

  • Li, B., Rigden, S. M., andLiebermann, R. C. (1992),Pressure Derivatives of the Elastic Wave Velocities in Polycrystalline Stishovite (abstract), EOS Trans. AGU73.

  • Li, B. (1993),Polycrystalline Stishovite: Hot-pressing and Elastic Properties, M.S. Thesis, State University of New York at Stony Brook.

  • Liebermann, R. C. (1972),Compressional Velocities of Polycrystalline Olivine, Spinel and Rutile Minerals, Earth Planet. Sci. Inter.17, 263–268.

    Google Scholar 

  • Liebermann, R. C. (1975),Elasticity of Olivine(), Beta(), and Spinel() Polymorphs of Germanates and Silicates, Geophys. J. Roy. Astr. Soc.42, 899–929.

    Google Scholar 

  • Liebermann, R. C., andSchreiber, E. (1968),Elastic Constants of Polcrystalline Hematite as a Function of Pressure, J. Geophys. Res.73, 6585–6590.

    Google Scholar 

  • Liebermann, R. C., andWang, Y.,Characterization of sample environment in a uniaxial split-sphere apparatus. InHigh Pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y., and Manghnani, M.) (Terra Scientific Publishing Co., and American Geophysical Union, Tokyo and Washington, D.C. 1992), pp. 19–31.

    Google Scholar 

  • Liebermann, R. C., Ringwood, A. E., Mayson, D. J., andMajor, A.,Hot-pressing of polycrystalline aggregate at very high pressure for ultrasonic measurements. InProceedings of 4th Conference on High Pressure (ed. Osugi) (Physico-Chemical Society of Japan, Tokyo 1975) pp. 495–502.

    Google Scholar 

  • Lloyd, E. C.,Accurate Characterization of the High Pressure Environment (NBS Spec. Publ. No. 326, Washington D.C. 1971) pp. 1–3.

    Google Scholar 

  • Mizutani, H., Hamano, Y., Ida, Y., andAkimoto, S. I. (1970), Compressional Wave Velocities of Fayalite, Fe2SiO4 Spinel, and Coesite, J. Geophys. Res.75, 2741–2747.

    Google Scholar 

  • Niesler, H., andJackson, I. (1989),Pressure Derivatives of the Elastic Wave Velocities from Ultrasonic Interferometry Measurements on Jacketed Polycrystals, J. Acoust. Soc. Am.86, 1573–1585.

    Google Scholar 

  • Rigden, S. M., andJackson, I. (1991),Elasticity of Germanate and Silicate Spinels at High Pressure, J. Geophys. Res.96, 9999–10006.

    Google Scholar 

  • Rigden, S. M., Jackson, I., Niesler, H., Ringwood, A. E., andLiebermann, R. C. (1988), Pressure Dependence of Elastic Wave Velocities of Mg2GeO4, Geophys. Res. Lett.15, 605–608.

    Google Scholar 

  • Rigden, S. M., Gwanmesia, G. D., FitzGerald, J., Jackson, I., andLiebermann, R. C. (1991), High Pressure Elasticity of Mg2SiO4-spinel: Implications for the 520 km Seismic Discontinuity and the Transition Zone of the Earth's Mantle, Nature354, 143–145.

    Google Scholar 

  • Rigden, S. M., Gwanmesia, G. D., Jackson, I., andLiebermann, R. C., Progress in high-pressure ultrasonic interferometry, the pressure dependence of elasticity of Mg2SiO4 polymorphs and constraints on the composition of the transition zone of the earth's mantle. InHigh Pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y., and Manghnani, M.) (Terra Scientific Publishing Co., and American Geophysical Union, Tokyo and Washington, D.C. 1992) pp. 167–182.

    Google Scholar 

  • Rigden, S. M., Gwanmesia, G. D., andLiebermann, R. C. (1992b),Pressure Dependence for Acoustic Wave Velocities for Majorite-pyrope Garnet. EOS, Trans. Amer. Geophys. Un.73, 517.

    Google Scholar 

  • Schreiber, E. (1967),Elastic Moduli of Single-crystal Spinel at 25°C and to 2 kbar, J. Appl. Phys.38, 2508–2511.

    Google Scholar 

  • Schreiber, E., andAnderson, O. L. (1966),Pressure Derivatives of the Sound Velocities of Polycrystalline Alumina, J. Am. Ceram. Soc.49, 184–190.

    Google Scholar 

  • Simmons, G. (1964),Velocity of Shear Waves in Rocks to 10 kilobars, 1, J. Geophys. Res.69, 1123–1130.

    Google Scholar 

  • Wang, C. Y. (1974),Pressure Coefficient of Compressional Wave Velocity for a Bronzitite, J. Geophys. Res.79, 771–772.

    Google Scholar 

  • Weidner, D. J., Vaughan, M. T., Ko, J., andWang, Y.,Characterization of stress, pressure and temperature in SAM 85, a DIA-type pressure apparatus. InHigh Pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y., and Manghnani, M.) (Terra Scientific Publishing Co., and American Geophysical Union, Tokyo and Washington, D.C. 1992) pp. 13–17.

    Google Scholar 

  • Yagi, T., andAkimoto, S. (1976),Direct Determination of Coesite-stishovite Transition by in situ X-ray Measurements, Tectonophys.35, 259–270.

    Google Scholar 

  • Zhang, J., Liebermann, R. C., Gasparik, T., Herzberg, C. T., andFei, Y. (1993), Melting and Subsolidus Relations of SiO2 at 9–14 GPa, J. Geophys. Res.,98, 19,785–19,793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

CHiPR: NSF Science and Technology Center for High Pressure Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwanmesia, G.D., Li, B. & Liebermann, R.C. Hot pressing of polycrystals of high-pressure phases of mantle minerals in multi-anvil apparatus. PAGEOPH 141, 467–484 (1993). https://doi.org/10.1007/BF00998340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998340

Key Words

Navigation