Numerical Methods in Quaternary Pollen Analysis

H. J. B. BIRKS

Botanical Institute University of Bergen Norway A. D. GORDON

Department of Statistics University of St. Andrews Scotland

ACADEMIC PRESS

Harcourt Brace Jovanovich, Publishers
London Orlando San Diego New York
Austin Montreal Sydney Tokyo Toronto

Contents

Preface	vii
1	
The Nature of Quaternary Pollen Analytical Data	
1.1 Pollen'Analysis as a Quaternary Palaeoecological Technique	1
1.2 Types of Quaternary Pollen Analytical Data	10
1.3 Methods of Presenting Quaternary Pollen Analytical Data	18
1.4 The Data Used	25
2	
Basic Statistical Concepts	
2.1 The Rôle of Statistics in Pollen Analysis	27
2.2 Description of the Binomial and Multinomial Distributions	- 29
2.3 The Binomial and Multinomial Distributions in Palynology	33
2.4 Further Statistical Examples in Quaternary Palynology	34
2.5 Exploratory Data Analysis and Classification	37
2.6 The Measurement of Dissimilarity	41
3	
The Analysis of Pollen Stratigraphical Data: Zonation	
3.1 The Concept of the Pollen Zone	47
3.2 Numerical Approaches to Pollen Zonation	51
3.3 The Constrained Single Link Method	56
3.4 Binary Divisive Procedures	59
3.5 Dynamic Programming Algorithm	64
3.6 The Variable Barriers Approach	67

	_	
V١	Conte	nte
A T	Conte	111.3

.1

3.7 Examples of Numerical Zonations	70		
3.8 Advantages and Limitations of Numerical Zonations	86		
4			
The Analysis of Pollen Stratigraphical Data:			
Comparison of Sequences	91		
4.1 Rationale of Comparing Pollen Sequences	91		
4.2 Numerical Approaches to Comparing Stratigraphical Sequences	92		
4.3 Comparison of Sequences in the Absence of Stratigraphical Constraints:			
Zone-By-Zone Comparisons	95		
4.4 Comparison of Sequences in the Absence of Stratigraphical Constraints:			
Classification Methods	96		
4.5 Comparison of Sequences by Slotting	105		
4.6 Numerical Comparisons of Abernethy Forest	113		
4.7 Other Examples of Numerical Comparisons	128		
4.8 Properties of the Numerical Methods of Comparison	137		
5			
The Analysis of Modern Pollen Data	141		
5.1 Introduction	141		
5.2 Numerical Approaches to the Analysis of Modern Pollen Data	143		
5.3 Presentation and Comparison of Modern Pollen Spectra from Different			
Vegetation Types	146		
5.4 Modelling Modern Pollen-Vegetation Relationships	182		
6			
The Interpretation of Pollen Stratigraphical Data	205		
6.1 Quantitative Approaches to Interpretation	205		
6.2 Sequence-Splitting, Curve-Fitting, and Time Series-Analysis	210		
6.3 The Use of Pollen-Representation Factors	225		
6.4 Comparing Modern and Fossil Pollen Spectra	236		
6.5 Recurrent Groups 6.6 Environmental Reconstructions	246 252		
6.6 Environmental Reconstructions	252		
Appendix: The Program ZONATION	265		
References	277		
Index *	313		