Skip to main content
Log in

Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of d-galactose and 3,6-anhydro-l-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the solgel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the solgel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the solgel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40T, was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the solgel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the solgel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M (2003) The three-dimensional structures of two β-agarases. J Biol Chem 278(47):47171–47180

    Article  CAS  PubMed  Google Scholar 

  • Armisén R (1991) Agar and agarose biotechnological applications. Hydrobiologia 221(1):157–166

    Article  Google Scholar 

  • Armisén R, Galatas F (1987) Production, properties and uses of agar. In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper 288. FAO, Rome, Italy, pp. 1–57

    Google Scholar 

  • Brinker CJ, Scherer GW (2013) Sol–gel science: the physics and chemistry of sol–gel processing. Sol–gel processing. Academic Press, Cambridge, pp. 2–10

    Google Scholar 

  • Chi W-J, Chang Y-K, Hong S-K (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 94(4):917–930

    Article  CAS  PubMed  Google Scholar 

  • Chi W-J, Park DY, Seo YB, Chang YK, Lee S-Y, Hong S-K (2014a) Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Appl Microbiol Biotechnol 98(10):4545–4555

    Article  CAS  PubMed  Google Scholar 

  • Chi W-J, Park J-S, Kang D-K, Hong S-K (2014b) Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the West Sea of South Korea. Appl Biochem Biotechnol 173:1703–1716

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Dong S, Shi X, Zhao X, Zhang X-H (2014) Overexpression and characterization of a novel thermostable β-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01T. Mar Drugs 12(5):2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl Environ Microbiol 72(5):3396–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XT, Pan C-H, Lin H, Kim SM (2009) Gene cloning, expression, and characterization of a β-agarase, agaB34, from Agarivorans albus YKW-3. J Microbiol Biotechnol 19(3):257–264

    CAS  PubMed  Google Scholar 

  • Fujii T, Yano T, Kumagai H, Miyawaki O (2000) Scaling analysis on elasticity of agarose gel near the sol  gel transition temperature. Food Hydrocoll 14(4):359–363

    Article  CAS  Google Scholar 

  • Ha SC, Lee S, Lee J, Kim HT, Ko H-J, Kim KH, Choi I-G (2011) Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun 412(2):238–244

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Lee S, Lee D, Kim H-S, Bang W-G, Kim KH, Choi I-G (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86(1):227–234

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Lee S, Kim KH, Choi I-G (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Yun EJ, Wang D, Chung JH, Choi I-G, Kim KH (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

    Article  CAS  PubMed  Google Scholar 

  • Knutsen SH, Myslabodski DE, Larsen B, Usov AI (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–169

    Article  CAS  Google Scholar 

  • Ko H-J, Park E, Song J, Yang TH, Lee HJ, Kim KH, Choi I-G, (2012) Functional cell surface display and controlled secretion of diverse agarolytic enzymes by Escherichia coli with a novel ligation-independent cloning vector based on the autotransporter YfaL. Appl Environ Microbiol 78(9):3051--3058

  • Lahaye M, Yaphe W, Viet MTP, Rochas C (1989) 13C-n.m.r. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr Res 190(2):249–265

    Article  CAS  Google Scholar 

  • Lee Y, Oh C, Zoysa MD, Kim H, Wickramaarachchi WDN, Whang I, Kang D-H, Lee J (2013) Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 β-agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli. J Microbiol Biotechnol 23(7):913–922

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Kim HT, Yun EJ, Lee AR, Kim SR, Kim J-H, Choi I-G, Kim KH (2014) A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Appl Environ Microbiol 80(19):5965–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Yun EJ, Kim HT, Choi I-G, Kim KH (2015) Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochem 50(10):1629–1633

    Article  CAS  Google Scholar 

  • Li G, Sun M, Wu J, Ye M, Ge X, Wei W, Li H, Hu F (2015) Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl Microbiol Biotechnol 99(23):10019–10029

    Article  CAS  PubMed  Google Scholar 

  • Medina-Esquivel R, Freile-Pelegrin Y, Quintana-Owen P, Yanez-Limon JM, Alvarado-Gil JJ (2008) Measurement of the solgel transition temperature in agar. Int J Thermophys 29(6):2036–2045

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Nussinovitch A (1997) Hydrocolloid applications: gum technology in the food and other industries. Springer, New York, pp. 1–18

    Book  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, Horikoshi K (2004) Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol 64(4):505–514

    Article  CAS  PubMed  Google Scholar 

  • Park DY, Chi W-J, Park J-S, Chang Y-K, Hong S-K (2015) Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7. Appl Biochem Biotechnol 175(2):733–747

    Article  CAS  PubMed  Google Scholar 

  • Pluvinage B, Hehemann J-H, Boraston AB (2013) Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J Biol Chem 288(39):28078–28088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Sys Biol 7(1):539

    Article  Google Scholar 

  • Temuujin U, Chi W-J, Lee S-Y, Chang Y-K, Hong S-K (2011) Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl Microbiol Biotechnol 92(4):749–759

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Yu G, Zhao X, Jiao G, Ren S, Chai W (2009) Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J 276(7):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, Pelton JG, Kang NJ, Choi I-G, Kim KH (2013) Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 97(7):2961–2970

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Choi I-G, Kim KH (2015) Red macroalgae as a sustainable resource for bio-based products. Trend Biotechnol 33(5):247–249

    Article  CAS  Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I-G, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    Article  CAS  PubMed  Google Scholar 

  • Zhang W-W, Sun L (2007) Cloning, characterization, and molecular application of a β-agarase gene from Vibrio sp. strain V134. Appl Environ Microbiol 73(9):2825–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Trade, Industry and Energy (10052721). Experiments were performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Jung Hyun Kim and Eun Ju Yun contributed equally to this work.

Electronic supplementary material

Fig. S1

(PDF 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Yun, E.J., Seo, N. et al. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 101, 1111–1120 (2017). https://doi.org/10.1007/s00253-016-7831-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7831-y

Keywords

Navigation