Skip to main content

Advertisement

Log in

Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

We assess inter- and intra-subject variability of magnetic resonance (MR)-based attenuation maps (MRμMaps) of human subjects for state-of-the-art positron emission tomography (PET)/MR imaging systems.

Materials and methods

Four healthy male subjects underwent repeated MR imaging with a Siemens Biograph mMR, Philips Ingenuity TF and GE SIGNA PET/MR system using product-specific MR sequences and image processing algorithms for generating MRμMaps. Total lung volumes and mean attenuation values in nine thoracic reference regions were calculated. Linear regression was used for comparing lung volumes on MRμMaps. Intra- and inter-system variability was investigated using a mixed effects model.

Results

Intra-system variability was seen for the lung volume of some subjects, (p = 0.29). Mean attenuation values across subjects were significantly different (p < 0.001) due to different segmentations of the trachea. Differences in the attenuation values caused noticeable intra-individual and inter-system differences that translated into a subsequent bias of the corrected PET activity values, as verified by independent simulations.

Conclusion

Significant differences of MRμMaps generated for the same subjects but different PET/MR systems resulted in differences in attenuation correction factors, particularly in the thorax. These differences currently limit the quantitative use of PET/MR in multi-center imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schmand M, Burbar Z, Corbeil JL et al (2007) BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 48:45

    Google Scholar 

  2. Delso G, Fürst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  3. Zaidi H, Ojha N, Morich M et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56:3091–3106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bailey DL, Barthel H, Beyer T et al (2013) Summary report of the First International Workshop on PET/MR imaging, March 19–23, 2012, Tübingen, Germany. Mol Imaging Biol 15:361–371

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bezrukov I, Mantlik F, Schmidt H et al (2013) MR-Based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59

    Article  PubMed  Google Scholar 

  6. Bailey DL, Barthel H, Beuthien-Baumann B et al (2014) Combined PET/MR: Where are we now? Summary report of the second international workshop on PET/MR imaging April 8–12, 2013, Tubingen, Germany. Mol Imaging Biol 16:295–310

    PubMed  Google Scholar 

  7. Keereman V, Fierens Y, Vanhove C et al (2012) Magnetic resonance-based attenuation correction for micro-single-photon emission computed tomography. Mol Imaging 12:155–165

    Google Scholar 

  8. Samarin A, Burger C, Wollenweber SD et al (2012) PET/MR imaging of bone lesions: implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39:1154–1160

    Article  PubMed  Google Scholar 

  9. Keller SH, Holm S, Hansen AE et al (2013) Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. Magn Reson Mater Phy 26:173–181

    Article  Google Scholar 

  10. Aznar MC, Sersar R, Saabye J et al (2014) Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol 83:1177–1183

    Article  CAS  PubMed  Google Scholar 

  11. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2007 (2007) Performance measurements of positron emission tomographs. Rosslyn, VA 26–33

  12. EANM Physics Committee, Busemann Sokole E, Płachcínska A et al (2010) Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 37:662–671

    Article  Google Scholar 

  13. Boellaard R, O’Doherty MJ, Weber WA et al (2000) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  Google Scholar 

  14. Ziegler S, Braun H, Ritt P et al (2013) Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging. J Nucl Med 54:1464–1471

    Article  CAS  PubMed  Google Scholar 

  15. Deller T, Delso G, Grant A, et al (2014) PET NEMA Performance Measurements for a SiPM-Based Time-of-Flight PET/MR System” IEEE Medical Imaging Conference, Seattle #1618

  16. Martinez-Möller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  17. Boellaard R, Hofman MBM, Hoekstra OS, Lammertsma AA (2014) Accurate PET/MR quantification using time of flight MLAA image reconstruction. Mol Imaging Biol 16(4):469–477

    Article  CAS  PubMed  Google Scholar 

  18. Ladefoged CN, Hansen AE, Keller SH (2014) Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion. EJNMMI Phys 1(1):101

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schramm G, Langner J, Hofheinz F et al (2013) Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. Magn Reson Mater Phy 26(1):115–126

    Article  CAS  Google Scholar 

  20. Conti M (2011) Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 56(1):155–168

    Article  PubMed  Google Scholar 

  21. Nuyts, J. Michel, M. Fenchel, et al. (2010) Completion of a truncated attenuation image from the attenuated PET emission data. In: IEEE nuclear science symposium conference record 2123–2127

  22. Salomon A, Goedicke A, Schweizer B et al (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813

    Article  PubMed  Google Scholar 

  23. Nuyts J, Bal G, Kehren F et al (2013) Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 32:237–246

    Article  PubMed  Google Scholar 

  24. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K (2013) MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med 70:1047–1057

    Article  PubMed  Google Scholar 

  25. Blumhagen JO, Braun H, Ladebeck R et al (2014) Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys. doi:10.1118/1.4861097

    PubMed  Google Scholar 

  26. Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  27. Hofmann M, Bezrukov I, Mantlik F et al (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation and atlas based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  28. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38:2708–2714

    Article  PubMed  Google Scholar 

  29. Navalpakkam BK, Braun H, Kuwert T, Quick HH (2013) Magnetic Resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 48:323–332

    Article  PubMed  Google Scholar 

  30. Paulus DH, Quick HH, Geppert C et al (2015) Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med 56:1061–1066

    Article  PubMed  Google Scholar 

  31. Tellmann L, Quick HH, Bockisch A et al (2011) The effect of MR surface coils on PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study. Med Phys 38:2795–2805

    Article  CAS  PubMed  Google Scholar 

  32. Paulus D, Braun H, Aklan B, Quick HH (2011) Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys 39:4306–4315

    Article  Google Scholar 

  33. Kartmann R, Paulus DH, Braun H, Aklan B, Ziegler S, Navalpakkam BK, Lentschig M, Quick HH (2013) Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils. Med Phys. doi:10.1118/1.4812685

    PubMed  Google Scholar 

  34. Wollenweber SD, Delso G, Deller T, Goldhaber D, Hüllner M, Veit-Haibach P (2014) Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging. Magn Reson Mater Phy 27:149–159

    Article  Google Scholar 

  35. Dixon AK (1983) Abdominal fat assessed by computed tomography: sex difference in distribution. Clin Radiol 34:189–191

    Article  CAS  PubMed  Google Scholar 

  36. Schramm G, Langner J, Hofheinz F et al (2013) Influence and compensation of truncation artifacts in MR-based attenuation correction in PET/MR. IEEE Trans Med Imaging 32:2056–2063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following technologists for their assistance in collecting the data: Femke Jongsma (VUMC) and Thorsten Böhm (UMCL). We are grateful to Susanne Ziegler (Erlangen) for supporting the acquisitions and in-depth advice. We thank Jacobo Cal Gonzalez (Vienna) for helpful discussions. We thank MIRADA medical (Oxford) for providing us with a research license of their XD software. This study was supported by the European Association of Nuclear Medicine (EANM) covering the travelling costs of Ronald Boellaard and Bernhard Sattler.

Author contributions

Protocol/project development: T. Beyer, R. Boellaard, G. Delso, H.H. Quick, B. Sattler. Data collection or management: T. Beyer, R. Boellaard, G. Delso, M.L. Lassen, H.H. Quick, B. Sattler, M. Yaqub. Data analysis: T. Beyer, R. Boellaar, G. Delso, M.L. Lassen, H.H. Quick, B. Sattler, M. Yaqub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Beyer.

Ethics declarations

Conflict of interest

Gaspar Delso is an employee of GE Healthcare and declares no conflict with this manuscript.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, T., Lassen, M.L., Boellaard, R. et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. Magn Reson Mater Phy 29, 75–87 (2016). https://doi.org/10.1007/s10334-015-0505-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0505-4

Keywords

Navigation