Skip to main content
Log in

Electrostimulation by time-varying magnetic fields

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Despite several investigations and publications on possible effects due to time-varying magnetic fields, the question remains as to the magnitude of the field, or its derivative with respect to time, that is capable of stimulating the human heart. It is quite surprising how little information on cardiac stimulation has entered the discussion to date. If the law of induction and the fundamental law of stimulation, both in their field forms, are combined, the result is quite different from what has been published: (1) It is the amplitude of the gradient field that is responsible for stimulation and notdB/dt. (2) The shape of the time-varying pulse has no influence on stimulation but only its mean value. (3) Owing to different rheobase and chronaxie values for cardiac tissue and peripheral nerves, the threshold for magnetostimulation of the myocardium is up to 200-fold higher than that for nerves. These results allow for the determination of safety limits that are certainly above those proposed to date. Based on these limits, technological advancement can be achieved without neglecting the patient safety requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NRPB National Radiological Protection Board (1983) Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging.Br J Radiol 56 974–977.

    Google Scholar 

  2. McRobbie D, Foster MA (1985) Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging.Phys Med Biol 30: 695–702.

    Google Scholar 

  3. Reilly JP (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields.Med Biol Eng Comput 27: 101–110.

    Google Scholar 

  4. International Non-Ionizing Radiation Committee of the International Radiation Protection Association (IRPA/INIRC) (1991) Protection of the patient undergoing a magnetic resonance examination.Health Phys. 61: 923–928.

    Google Scholar 

  5. IEC/SC 62B (Secretariat) 145 (1991)Draft IEC Standard Medical Electrical Equipment. Part 2: Particular requirements for the safety of magnetic resonance systems for medical diagnosis. Geneve: Bureau Central de la Commission Electrotechnique International.

  6. Mouchawar GA, Bourland JD, Nyenhuis JA, Geddes LA, Foster KS, Jones JT, Graber GP (1992) Closed-chest cardiac stimulation with a pulsed magnetic field.Med Biol Eng Comp 30: 162–168.

    Google Scholar 

  7. Silny J (1987) Zur Gefährdung der vitalen Funktion des Herzens im magnetischen 50Hz-Feld. Medizinisch-technischer Bericht des Instituts zur Erforschung elek-trischer Unfälle, Berufsgenossenschaft Feinmechanik und Elektrotechnik Gustav-Heinemann-Ufer 130, 50968 Köln, Germany.

  8. Reilly JP (1992)Electrical Stimulation and Electropathology. Cambridge: Cambridge University Press.

    Google Scholar 

  9. Lapicque L (1909) Definition expérimental de l'excitabilité.Soc Biol 77: 280–283.

    Google Scholar 

  10. Irnich W (1973) Physikalische Überlegungen zur Elektro-stimulation.Biomed Technik 18: 97–104.

    Google Scholar 

  11. Irnich W (1980) The chronaxie time and its practical importance.PACE 3: 292–301.

    Google Scholar 

  12. Starmer GF, Whalen RE (1973) Current density and electrically induced ventricular fibrillation.Med Instrum 7: 3–7.

    Google Scholar 

  13. Frazier DW, Krassowska W, Chen P-S, Wolf PD, Dixon EG, Smith WM, Ideker RE (1988) Extracellular field required for excitation in three-dimensional anisotropic canine myocardium.Circ Res 63: 147–164.

    Google Scholar 

  14. Irnich W (1990) The fundamental law of electrostimulation and its application to defibrillation.PACE 13: 1433–1447.

    Google Scholar 

  15. Winfree AT (1990) The electrical thresholds of ventricular myocardium.J Cardiovasc Electrophysiol 1: 393–410.

    Google Scholar 

  16. Lepeschkin E, Jones JL, Rush S, Jones RE (1978) Local potential gradient as a unifying measure for thresholds of stimulation standstill, tachyarrythmia and fibrillation appearing after strong capacitor discharges.Adv Cardiol 21: 268–278.

    Google Scholar 

  17. Knisley StB, Smith WM, Ideker RE (1992) Effect of intrastimular polarity, reversal on electric field stimulation thresholds in frog and rabbit myocardium. JCardiovasc Electrophysiol 3: 239–254.

    Google Scholar 

  18. Weiss G (1901) Sur la possibilité de rendre comparable entre eux les appareils servant à l'excitation électrique.Arch Hal Biol 35: 413–446.

    Google Scholar 

  19. Bourland JD, Tacker WA, Geddes LA, Chafee V (1978) Comparative efficacy of damped sine wave and square wave current for transchest ventricular defibrillation in animals.Med Instrum 12: 43–45.

    Google Scholar 

  20. Tacker WA, Geddes LA (1980)Electrical Defibrillation pp. 74–85. Boca Raton, FL: CRC Press.

    Google Scholar 

  21. Wessale JL, Bourland JD, Tacker WA, Geddes LA (1980) Bipolar catheter defibrillation in dogs using trapezoidal waveforms of various tilts.J Electrocardiol 13: 359–366.

    Google Scholar 

  22. Mouchawar GA, Geddes LA, Bourland JD, Pearee JA (1989) Ability of the Lapicque and Blair strength-duration curves to fit experimentally obtained data from a dog heart.IEEE Trans. BME-36 971–974.

    Google Scholar 

  23. Reilly JP, Freeman VT, Larkin WD (1985) Sensory effects of transient electrical stimulation evaluation with a neuro-electric model.IEEE Trans BME-32 1001–1011.

    Google Scholar 

  24. Mansfield PH (1993) Limits of neural stimulation in echo-planar imaging.MRM 29: 746–758.

    Google Scholar 

  25. Kloos DA, Carstensen EL (1983) Effect of ELF electric fields on the isolated frog heart.IEEE Trans BME 30 347–348.

    Google Scholar 

  26. Irnich W (1975) Engineering concepts of pacemaker electrodes. InAdvances in Pacemaker Technology, Schaldach M, Furman S (eds). Heidelberg: Springer-Verlag.

    Google Scholar 

  27. Irnich W (1991) Engineering concepts of pacemaker leads. InPacemaker Leads 1991 Proc 2nd Int Symp on Pacemaker Leads, Ferrara Antonioli GE, Aubert AE, Ector H (eds). Amsterdam: Elsevier.

    Google Scholar 

  28. Kleinert M, Irnich W, Beer P (1977) Vergleichende Untersuchungen des Reizschwellenverhaltens nach Implantation verschieden grosser Herzschrittmacherelek-troden.Z Kardiol 66: 191–197.

    Google Scholar 

  29. Lüderitz B (1986)Herzschrittmacher, Therapie und Diagnostik kardialer Rhythmusstörungen. Heidelberg: Springer-Verlag.

    Google Scholar 

  30. Daubert IP, Frazier DW, Wolf PD, Franz MR, Smith WM, Ideker RE, (1991) Response of relatively refractory canine myocardium to monophasic and biphasic shocks.Circulation 84: 2522–2538.

    Google Scholar 

  31. Shimizu Y, Tasaki K (1966) Excitability of the developing chick embryo heart.Tohoku J Exp Med 88: 49.

    Google Scholar 

  32. Antoni H, Tägtmeyer H (1965)Die Wirkung starker Ströme auf Erregungsablauf und Kontraktion des Herztnuskels, pp. 1–21. Frankfurt: Verlags- u. Wirtschaftsges Elektrizitätswerke.

    Google Scholar 

  33. Irwin D, Rush S, Lepeschkin E, Montgomery D, Wegel R (1970) Stimulation of cardiac muscle by a time-varying magnetic field.IEEE Trans Magn M-6 321–333.

    Google Scholar 

  34. Tsukerman BM, Titomir LI (1973) Defibrillation of the heart with rotating currents.Kardiologiia 13: 75–80.

    Google Scholar 

  35. Tung L, Sliz N, Mulligan R (1991) Influence of electrical axis of stimulation on excitation of cardiac muscle cells.Circulation Res 69: 722–730.

    Google Scholar 

  36. Knisley StB, Smith WM, Ideker RE (1992) Effect of field stimulation on cellular repolarization in rabbit myocardium.Circulation Res 70: 707–715.

    Google Scholar 

  37. Milnor WR, Knickerbocker GG, Kouvenhoven WB (1958) Cardiac response to transthoracic capacitor discharges.Circulation Res 6: 60–65.

    Google Scholar 

  38. Hughes NC Jr, Tyer GFO (1975) Effect of stimulation site on ventricular threshold in dogs with heart block.Amer Heart J 89: 68–73.

    Google Scholar 

  39. Ideker RE, Krassowska W, Wharton JM, Smith WM (1989) Experimental results pertinent to the modelling of defibrillation.IEEE EngMed Biol Soc 11: 77–78.

    Google Scholar 

  40. Irnich W (1976) Elektrotherapie des Herzeus-physiologische und biotechnische Aspekte, p. 64. Berlin: Fadiverlag Schiele & Schön.

    Google Scholar 

  41. Zoll PM, Paul MH, Linenthal AJ, Norman LR, Gibson W (1956) The effect of external electric current on the heart.Circulation 14: 745–756.

    Google Scholar 

  42. Furman S, Parker B, Escher DJW (1971) Decreasing electrode size and increasing efficiency of cardiac stimulation.J Surg Res 11: 105–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address for correspondence: Department of Medical Engineering, Justus-Liebig-University, Gießen, Aulweg 123,35392 Gießen, Germany. Additional reprints of this chapter may be obtained from the Reprints Department, Chapman & Hall, One Venn Plaza, New York, NY 10119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irnich, W. Electrostimulation by time-varying magnetic fields. MAGMA 2, 43–49 (1994). https://doi.org/10.1007/BF01709799

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01709799

Keywords

Navigation