Skip to main content
Log in

Evolutionary relationships of eukaryotic kingdoms

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolutionary relationships of four eukaryotic kingdoms—Animalia, Plantae, Fungi, and Protista—remain unclear. In particular, statistical support for the closeness of animals to fungi rather than to plants is lacking, and a preferred branching order of these and other eukaryotic lineages is still controversial even though molecular sequences from diverse eukaryotic taxa have been analyzed. We report a statistical analysis of 214 sequences of nuclear small-subunit ribosomal RNA (srRNA) gene undertaken to clarify these evolutionary relationships. We have considered the variability of substitution rates and the nonindependence of nucleotide substitution across sites in the srRNA gene in testing alternative hypotheses regarding the branching patterns of eukaryote phylogeny. We find that the rates of evolution among sites in the srRNA sequences vary substantially and are approximately gamma distributed with size and shape parameter equal to 0.76. Our results suggest that (1) the animals and true fungi are indeed closer to each other than to any other “crown” group in the eukaryote tree, (2) red algae are the closest relatives of animals, true fungi, and green plants, and (3) the heterokonts and alveolates probably evolved prior to the divergence of red algae and animal-fungus-green-plant lineages. Furthermore, our analyses indicate that the branching order of the eukaryotic lineages that diverged prior to the evolution of alveolates may be generally difficult to resolve with the srRNA sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson RA (1991) The cytoskeleton of chromophyte algae. Protoplasma 164:143–159

    Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Google Scholar 

  • Barr DJS (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84:1–11

    Google Scholar 

  • Bhattacharya D, Medlin L, Wainright PO, Ariztia EV, Claude B, Stickel SK, Sogin ML (1992) Algae containing chlorophylesa+c are paraphyletic: molecular evolutionary analysis of the chromophyta. Evolution 46:1801–1817

    Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1988) Exceptional preservation of fossils in an upper proterozoic shale. Nature 334:424–427

    Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1990) A Bangiophyte red alga from the proterozoic of arctic Canada. Science 250:104–107

    Google Scholar 

  • Cavalier-Smith T (1987a) The origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 503:17–54

    Google Scholar 

  • Cavalier-Smith T (1987b) The origin of fungi and pseudofungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the Fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    Google Scholar 

  • Corliss JO (1984) The kingdom Protista and its 45 phyla. Biosystems 17:87–126

    Google Scholar 

  • Elwood HJ, Olsen GJ, Sogin ML (1985) The small subunit ribosomal RNA gene sequences from the hypotricous ciliatesOxytricha nova andStylonchia pustulata. Mol Biol Evol 2:399–410

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Gajadhar AA, Marquardt WC, Hall R, Gunderson J, Ariztia-Carmona EV, Sogin ML (1991) Ribosomal RNA sequences ofSarcocystis muris, Theileria annulata, andCrypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45:147–154

    Google Scholar 

  • Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KG, Zakharyev VM, Bayev AA (1981) Secondary structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene fromSacchromyces cerevisiae. Nucleic Acids Res 9:6953–6958

    Google Scholar 

  • Golding GB (1983) Estimates of DNA and protein sequence divergence: an examination of some assumptions. Mol Biol Evol 1:125–142

    Google Scholar 

  • Gouy M, Li W-H (1989) Molecular phylogeny of the kingdoms animalia, plantae, and fungi. Mol Biol Evol 6:109–122

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J (1992) Origin and evolution of eukaryotes as inferred from protein sequence data. In: Hartman H, Matsuno K, (eds) The origin and evolution of the cell. World Scientific, New Jersey, pp 107–130

    Google Scholar 

  • Hendriks L, De Baere R, Van de Peer Y, Neefs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyteProphyra umbilicalis and the basidiomyceteLeucosporidium scottii among other eukaryotes as deduced from compute sequences of small ribosomal subunit RNA. J Mol Evol 32:167–177

    Google Scholar 

  • Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Google Scholar 

  • Kivic PA, Walne PL (1984) An evaluation of a possible phylogenetic relationship between the Euglenophyta and Kinetoplastida. Orig Life 13:269–288

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627

    Google Scholar 

  • Kuma K, Nikoh N, Iwabe N, Miyata T (1995) Phylogenetic position ofDictyostelium inferred from multiple protein data sets. J Mol Evol 41:238–246

    Google Scholar 

  • Kumar S (1995) PHYLTEST: phylogeny hypothesis testing software. The Pennsylvania State University, University Park

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) Manual for MEGA: molecular evolutionary genetic analysis software. Pennsylvania State University, University Park

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    Google Scholar 

  • Lake JA (1990) Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766

    Google Scholar 

  • Larson N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal database project. Nucleic Acids Res 21:3021–3023

    Google Scholar 

  • Margulis L, Schwartz KV (1988) Five kingdoms. WH Freeman and Company, New York

    Google Scholar 

  • Nikoh N, Hayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationships of the kingdoms Animalia, Plantae, and Fungi as inferred from 23 different protein species. Mol Biol Evol 11:762–768

    Google Scholar 

  • Noller HF, Asire M, Barta A, Douthwaite S, Goldstein T, Gutell RR, Moazed D, Normanly J, Prince JB, Stern S, Triman K, Turner S, Von Stolk B, Wheaton V, Weiser B, Woese CR (1986) Studies on the structure and function of ribosomal RNA. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer Verlag, Berlin, pp 141–163

    Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    Google Scholar 

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 357–379

    Google Scholar 

  • Patterson DJ, Sogin ML (1992) Eukaryote origins and protistan diversity. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, New Jersey, pp 13–46

    Google Scholar 

  • Ragan MA (1989) Biochemical pathways and the phylogeny of the eukaryotes. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life. Elsevier Science Publisher, pp 145–160

  • Rubtsov PM, Musakhanov MM, Zakharyev VM, Karayev AA, Skryabin KG, Bayev AA (1980) The structure of the yeast ribosomal NA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene fromSaccharomyces cerevisiae. Nucleic Acids Res 8:5779–5794

    Google Scholar 

  • Rzhetsky A (1995) Estimating substitution rates in ribosomal RNA genes. Genetics 141:771–783

    Google Scholar 

  • Rzhetsky A, Kumar S, Nei M (1995) Four-cluster analysis: a simple method to test phylogenetic hypotheses. Mol Biol Evol 12:163–167

    Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    Google Scholar 

  • Rzhetsky A, Nei M (1994a) METREE: a program package for inferring and testing minimum-evolution trees. Comput Appl Biosci 10:409–412

    Google Scholar 

  • Rzhetsky A, Nei M (1994b) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38:295–299

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sidow A, Thomas WK (1994) A molecular evolutionary framework for eukaryotic model organisms. Curr Biol 4:596–603

    Google Scholar 

  • Sleigh M (1989) Protozoa and other protists. Edward Arnold, New York

    Google Scholar 

  • Smothers JF, Dohlen CDV, Smith LHJ, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721

    Google Scholar 

  • Sogin ML (1989) Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29:487–499

    Google Scholar 

  • Tajima F (1993) Unbiased estimate of evolutionary distance between nucleotide sequences. Mol Biol Evol 10:677–688

    Google Scholar 

  • Uzzell T, Corbin KW (1971) Fitting discrete probability distribution to evolutionary events. Science 253:1503–1507

    Google Scholar 

  • Van de Peer Y, Neefs J, De Rijk P, De Wechter R (1993) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21:43–55

    Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of metazoa: an evolutionary link with fungi. Science 260:340–342

    Google Scholar 

  • Wakeley J (1993) Substitution rate variation among sites in hypervariable region I of human mitochondrial DNA. J Mol Evol 37:613–623

    Google Scholar 

  • Woese CR (1987) Archaebacteria. Sci Am 260:98–122

    Google Scholar 

  • Wolters J (1991) The troublesome parasites-molecular and morphological evidence that Apicomplexa belong to the dinoflagellatecliate clade. Biosystems 25:75–83

    Google Scholar 

  • Zharkikh AA, Rzhetsky A, Morosov PS, Sitnikova TL, Krushkal JS (1991) VOSTORG: a package of microcomputer programs for sequence analysis and construction of phylogenetic trees. Gene 101:251–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Rzhetsky, A. Evolutionary relationships of eukaryotic kingdoms. J Mol Evol 42, 183–193 (1996). https://doi.org/10.1007/BF02198844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198844

Key words

Navigation