Skip to main content
Log in

Haplotype analysis of familial amyloidotic polyneuropathy

Evidence for multiple origins of the Val→Met mutation most common to the disease

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant genetic disease characterized by systemic accumulation of amyloid fibrils. A major component of FAP anyloid has been identified as variant transthyretin (TTR, also called prealbumin). In particular, a variant with the substitution 30Val→Met has been commonly found in FAP of various ethnic groups. To understand the origin and spread of the Val→Met mutation, we analyzed DNA polymorphisms associated with the TTR gene in six Japanese FAP families and several Portuguese FAP patients. Three distinct haplotypes associated with the Val→Met mutation were identified in Japanese FAP families, one of which was also found in Portuguese patients. On the other hand, it was found that the Val→Met mutation can be explained by a C-T transition at the CpG dinucleotide sequence of a mutation hot spot. Thus, our findings indicate that the Val→Met mutation has probably recurred in the human population, to generate FAP families of independent origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade C (1952) A peculiar form of peripheral neuropathy familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427

    Google Scholar 

  • Barker D, Schafer M, White R (1984) Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 36:131–138

    Google Scholar 

  • Benson MD, Dwulet FE (1985) Identification of a new amino acid substitution in plasma prealbumin associated with hereditary amyloidosis. Clin Res 33:590a (abstr)

    Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA Nucleic Acids Res 8:1499–1504

    Google Scholar 

  • Costa PP, Figueira AS, Bravo FR (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–4503

    Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hot spots in Escherichia coli. Nature 274:775–780

    Google Scholar 

  • Cox DW, Woo SLC, Mansfield T (1985) DNA restriction fragments associated with 12-1 indicate a single origin for deficiency allele PIZ. Nature 316:79–81

    Google Scholar 

  • Dwulet FE, Benson MD (1983) Polymorphism of human plasma thyroxine binding prealbumin. Biochem Biophys Res Commun 114:657–662

    Google Scholar 

  • Husby G, Sletten K (1986) Chemical and clinical classification of amyloidosis 1985. Scand J Immunol 23:253–265

    Google Scholar 

  • Ide M, Mita S, Ikegawa S, Maeda S, Shimada K, Araki S (1986) Identification of mutant prealbumin gene associated with familial amyloidotic polyneuropathy type i by Southern blot procedures: study of six pedigrees in the Arao district of Japan. Hum Genet 73:281–285

    Google Scholar 

  • Kametani F, Tonoike H, Hoshi A, Shinoda T, Kito S (1984) A variant prealbumin-related low molecular weight amyloid fibril protein in familial amyloid polyneuropathy of Japanese origin. Biochem Biophys Res Commun 125:622–628

    Google Scholar 

  • Kurnit DM, Hoehn H (1979) Prenatal diagnosis of human genome variation. Annu Rev Genet 13:235–258

    Google Scholar 

  • Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Mita S, Maeda S, Ide M, Tsuzuki T, Shimada K, Araki S (1986) Familial amyloidotic polyneuropathy diagnosed by cloned human prealbumin cDNA. Neurology 36:298–301

    Google Scholar 

  • Nakazato M, Kangawa K, Minamino N, Tawara S, Matsuo H, Araki S (1984) Revised analysis of amino acid replacement in a prealbumin variant (SKO-III) associated with familial amyloidotic polyneuropathy of Jewish origin. Biochem Biophys Res Commun 123:921–928

    Google Scholar 

  • Pras M, Prelli F, Franklin EC, Frangione B (1983) Primary structure of an amyloid prealbumin variant in familial polyneuropathy of Jewish origin. Proc Natl Acad Sci USA 80:539–542

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Google Scholar 

  • Salser W (1977) Globin mRNA sequences: analysis of base pairing and evolutionary implications. Cold Spring Harbor Symp Quant Biol 42:985–1002

    Google Scholar 

  • Saraiva MJM, Costa PP, Birken S, Goodman DS (1983) Presence of an abnormal transthyretin (prealbumin) in Portuguese patients with familial amyloidotic polyneuropathy. Trans Assoc Am Physicians 96:261–270

    Google Scholar 

  • Saraiva MJM, Birken S, Costa PP, Goodman DS (1984) Amyloid fibril protein in familial amyloidotic polyneuropathy Portuguese type. J Clin Invest 74:104–119

    Google Scholar 

  • Saraiva MJM, Sherman W, Goodman DS (1986) Presence of a plasma transthyretin (prealbumin) variant in familial amyloidotic polyneuropathy in a kindred of Greek origin. J Lab Clin Med 108:17–22

    Google Scholar 

  • Sasaki H, Sakaki Y, Matsuo H, Goto I, Kuroiwa Y, Sahashi K, Takahashi A, Shinoda T, Isobe T, Takagi Y (1984) Diagnosis of familial amyloidotic polyneuropathy by recombinant DNA techniques. Biochem Biophys Res Commun 125:636–642

    Google Scholar 

  • Sasaki H, Sakaki Y, Takagi Y, Sahashi K, Takahashi A, Isobe T, Shinoda T, Matsuo H, Goto I, Kuroiwa Y (1985a) Presymptomatic diagnosis of heterozygosity for familial amyloidotic polyneuropathy by recombinant DNA techniques. Lancet I:100

    Google Scholar 

  • Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985b) Structure of the chromosomal gene for human serum prealbumin. Gene 37:191–197

    Google Scholar 

  • Tawara S, Nakazato M, Kangawa K, Matsuo H, Araki S (1983) Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem Biophys Res Commun 116:880–888

    Google Scholar 

  • Wallace MR, Dwulet FE, Conneally PM, Benson MD (1986) Biochemical and molecular genetic characterization of a new variant prealbumin associated with hereditary amyloidosis. J Clin Invest 78:6–12

    Google Scholar 

  • Wallace MR, Dwulet FE, Williams EC, Conneally PM, Benson MD (1988) Identification of a new hereditary amyloidosis prealbumin variant, Tyr 77, and detection of the gene by DNA analysis. J Clin Invest 81:189–193

    Google Scholar 

  • Yoshioka K, Sasaki H, Yoshioka N, Furuya H, Harada T, Kito S, Sakaki Y (1986a) Structure of the mutant prealbumin gene responsible for familial amyloidotic polyneuropathy. Mol Biol Med 3:319–328

    Google Scholar 

  • Yoshioka K, Yoshioka N, Nakabeppu K, Sakaki Y (1986b) Two RFLPs associated with the human prealbumin gene (PALB). Nucleic Acids Res 14:3147

    Google Scholar 

  • Youssoufian H, Kazazian HH, Phillips DG, Aronis S, Tsiftis G, Brown VA, Antonarakis SE (1986) Recurrent mutations in hemophilia A give evidence for CpG mutation hot spots. Nature 324: 380–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshioka, K., Furuya, H., Sasaki, H. et al. Haplotype analysis of familial amyloidotic polyneuropathy. Hum Genet 82, 9–13 (1989). https://doi.org/10.1007/BF00288262

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288262

Keywords

Navigation