Skip to main content

Advertisement

Log in

Normal and dusty days comparison of culturable indoor airborne bacteria in Ahvaz, Iran

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Important sources of chemical and biological indoor pollutants include outdoor air, the human body and human activities, emission from materials, furnishings, appliances and use of commodities. The main purpose of this study was to identify culturable indoor airborne bacteria in normal and dust event days in indoor environments of a school, a hospital and a university in Ahvaz city, which individuals such as children, teenagers, adolescences and old people had activity there. Samples were collected using the biostage sampler, an Andersen-based method, with a flow rate of 28.3 l/min, from July 2010 to March 2011. Temperature and humidity were measured and registered in each time of sampling. The identification of bacteria was performed to genus level by using appropriate methods and standard biochemical tests. Gram-positive bacteria in both normal and dust event days with more than 90 % had the highest concentration and frequency. Predominant bacteria in normal and dust event days were Staphylococcus spp. (72.9, 87.9 %), Streptomyces spp. (60.9, 62.1 %), Bacillus spp. (94, 89 %) and Micrococcus spp. (65.4, 71.2 %), respectively. The highest concentrations of bacteria in normal and dust event days were in winter. The range of bacteria in normal and dust event days were 0–4,800 and 210–10,000 cfu/m3, respectively. There was a significant difference between the concentration of bacteria in normal and dust event days (p = 0.001) and also a significant association was found between the concentration of total bacteria with temperature and humidity (p < 0.05). The concentration of bacteria in dust event days was 1.8 times higher than normal days. Consequently, the concentrations of bacteria in all three sampling sites were higher in dust event days than normal days indicating the impact of dust storms on increased bacterial concentration in indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.

    Article  CAS  Google Scholar 

  • ACGIH. (1989), Guidelines for the assessment of bioaerosols in the indoor environment. American Conference of Governmental Industrial Hygienists Bioaerosol Committee. Cincinnati; Contract No: Document Number.

  • Adhikari, A., Sen, M. M., Gupta-bhatta, S., & Chand, S. (2004). Volumetric assessment of airborne fungi in two sections of rural indoor dairy cattle shed. Environment International, 29, 1071–1078.

    Article  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484.

    CAS  Google Scholar 

  • Augustowska, M., & Dutkiewicz, J. (2006). Variability of airborne microflora in a hospital ward within a period of one year. Annals of Agricultural and Environmental Medicine, 13, 99–106.

    Google Scholar 

  • Brust, J. C., Whittier, S., Scully, B. E., McGregor, C. C., & Yin, M. T. (2004). Five cases of bacteraemia due to Gordonia species. Journal of medical microbiology, 58, 1376–1378.

    Article  Google Scholar 

  • Chan, P. L., Yu, P. H. F., Cheng, Y. W., Chan, C. Y., & Wong, P. K. (2009). Comprehensive characterization of indoor airborne bacterial profile. Journal of Environmental Sciences, 21, 1148–1152.

    Article  CAS  Google Scholar 

  • Christina, A., Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution, 21(11), 638–644.

    Article  Google Scholar 

  • Dehdari Rad, H., Babaei, A., Goudarzi, G., Ahmadi-Angali, K., Ramezani, Z., & Mirmohammadi, M. (2014). Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Quality, Atmosphere and Health journal,. doi:10.1007/s11869-014-0254-y.

    Google Scholar 

  • Derakhshandeh, M., Rostami, M. H., Goudarzi, G., & Rostami, M. Z. (2014). Evaluation of tendency to migration in the case of Ahvaz dust storm occurrence: A public survey. Advances in Civil and Environmental Engineering, 02(1), 55–69.

    Google Scholar 

  • Fang, Z., Ouyaang, Z., Zheng, H., Wang, X., & Hu, L. (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54, 487–496.

    Article  Google Scholar 

  • Fang, Z., Ouyang, Z., Hu, L., Wang, X., Zheng, H., & Lin, X. (2005). Culturable airborne fungi in outdoor environments in Beijing, China. Science of the Total Environment, 350, 47–58.

    Article  CAS  Google Scholar 

  • Goudarzi, G., Mohammadi, M. J., Ahmadi-Angali, K., Neissi, A., Babaei, A., Mohammadi, B., et al. (2012). Estimation of health effects attributed to NO2 exposure using AirQ model. Archives of Hygiene Sciences, 1(2), 59–66.

    Google Scholar 

  • Goudarzi, G., Shirmardi, M., Khodarahmi, F., Hashemi-Shakraki, A., Alavi, N., Ahmadi-Ankali, K., et al. (2014). Particulate matter and bacteria characteristics of the Middle East dust (MED) storms over Ahvaz, Iran. Aerobiologia. DOI 10.1007/s10453-014-9333-7.

  • Goudarzi, G., Zallaghi, E., Neissi, A., Ankali, K. A., Saki, A., Babaei, A. A., et al. (2013). Cardiopulmonary mortalities and chronic obstructive pulmonary disease attributed to ozone air pollution. Archives of Hygiene sciences, 2(2), 62–72.

    Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology reviews, 20, 459–477.

    Article  Google Scholar 

  • Griffin, D. W., Kubilay, N., Kocak, M., Gray, M. A., Borden, T. C., Kellogg, C. A., et al. (2007). Airborne desert dust and aero microbiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41, 4050–4062.

    Article  CAS  Google Scholar 

  • Griffin, D. W., Westphal, D. L., & Gray, M. A. (2006). Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, leg 209. Aerobiologia, 22, 211–226.

    Article  Google Scholar 

  • Heidari-Farsani, M., Shirmardi, M., Goudarzi, G., Alavi-Bakhtiarvand, N., Ahmadi-Ankali, K., Zallaghi, E., et al. (2014). The evaluation of heavy metals concentration related to PM10 in ambient air of Ahvaz city, Iran. Journal of Advances in Environmental Health Research, 1(2), 120–128.

    Google Scholar 

  • Ho, H. M., Rao, C. Y., Hsu, H. H., Chiu, Y. H., Liu, C. M., & Chao, H. J. (2005). Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmospheric Environment, 39, 5839–5850.

    Article  CAS  Google Scholar 

  • Hua, N. P., Kobayashi, F., Iwasaka, Y., Shi, G. Y., & Naganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291–298.

    Article  Google Scholar 

  • Hwang, S. H., Yoon, C. S., Ryu, K. N., Paik, S. Y., & Cho, J. H. (2010). Assessment of airborne environmental bacteria and related factors in 25 underground railway stations in Seoul, Korea. Atmospheric Environment, 44, 1658–1662.

    Article  CAS  Google Scholar 

  • Jo, W.-K., & Seo, Y.-J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61, 1570–1579.

    Article  CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust-Review. Trends in Ecology and Evolution, 21, 638–644.

    Article  Google Scholar 

  • Kellogg, C. A., Griffin, D. W., Garrison, V. H., Peak, K. K., Royall, N., Smith, R. R., et al. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia, 20, 99–110.

    Article  Google Scholar 

  • Kim, K.-Y., Kim, H.-T., Kim, D., Nakajima, J., & Higuchi, T. (2009). Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories. Journal of Hazardous Materials, 169, 1054–1060.

    Article  CAS  Google Scholar 

  • Kwaasi, A. A., Parhar, R. S., Al-Mohanna, F. A., Harfi, H. A., Collison, K. S., & Al-Sedairy, S. T. (1998). Aeroallergens and viable microbes in sand storm dust. Potential triggers of allergic and nonallergic respiratory ailments. Allergy, 53, 255–265.

    Article  CAS  Google Scholar 

  • Leger, J. S., Begeman, L., Fleetwood, M., Frasca, J. R. S., Garner, M. M., Lair, S., et al. (2009). Comparative pathology of nocardiosis in marine mammals. Veterinary Pathology, 46(2), 299–308.

    Article  Google Scholar 

  • Lyles, M. B., Fredrickson, H. L., Bednar, A. J., Fannin, H. B., & Sobecki, T. M. (2005). The chemical, biological, and mechanical characterization of airborne micro-particulates from Kuwait. Abstr. 8th Ann. Force Health Protect. Conf., session 2586, Louisville, KY.

  • Maier, R. M., Drees, K. P., Neilson, J. W., Henderson, D. A., Quade, J., & Betancourt, J. L. (2004). Microbial life in the Atacama Desert. Science, 306, 1289–1290.

    Article  CAS  Google Scholar 

  • Massoum, Beigi H., Ghiaseddin, M., Shariat, M., & Mirzaei, S. A. (1998). Survey of the aerobic flora in the air central district of Tehran. Kowsar Medical Journal, 2(3), 104–197. [In Persian].

    Google Scholar 

  • Mcneil, M. M., & Brown, J. M. (1994). The medically important aerobic actinomycetes: epidemiology and microbiology. Clinical Microbiology Reviews, 7(3), 357–417.

    CAS  Google Scholar 

  • Mehta, Y. B., Goswami, R., Bhanot, N., Mehta, Z., & Simonelli, P. (2011). Tsukamurella infection: a rare cause of community-acquired pneumonia. The American journal of the medical sciences, 341(6), 500–503.

    Article  Google Scholar 

  • Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermalconditions in schools influence student performance? A critical review of the literature. Indoor Air, 15, 27–52.

    Article  CAS  Google Scholar 

  • Moon, K. W., Huh, E. H., & Jeong, H. C. (2014). Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea. Environmental Monitoring and Assessment, 186(4), 2111–2120.

    Article  CAS  Google Scholar 

  • Naddafi, K., Rezaei, S., Nabizadeh, R., Yonesian, M., & Jabbari, H. (2009). Density of airborne bacteria in a children’s hospital in Tehran. Iranian Journal of Health and Environment, 1(2), 75–80. In Persian.

    Google Scholar 

  • National Environmental Agency, Institute of Environmental Epidemiology, Ministry of the Environment. (1996). Guidelines for good indoor air quality in office premises. First edition, pp 44.http://www.bca.gov.sg/greenmark/others/NEA_Office_IAQ_Guidelines.pdf (NEA).

  • Oberdorster, G., Ferin, J., Gelein, R., & Weiss, B. (1995). Association of particulateair pollution and acute mortality: involvement of ultrafine particles. Inhalation Toxicology, 7, 11–24.

    Article  Google Scholar 

  • Pastuszka, J. S., Kyaw Tha Paw, U., Lis, D. O., Wlazło, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34, 3833–3842.

    Article  CAS  Google Scholar 

  • Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation Toxicology, 7(1), 1–18.

    Article  CAS  Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19.

    Article  Google Scholar 

  • Salonen, H., Lappalainen, S., Lindroos, O., Harju, R., & Reijula, K. (2007). Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment, 41, 6797–6807.

    Article  CAS  Google Scholar 

  • Schlesinger, P., Mamane, Y., & Grishkan, I. (2006). Transport of microorganisms to Israel during Saharan dust events. Aerobiologia, 22(4), 259–273.

    Article  Google Scholar 

  • Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., et al. (2012a). Characterization of ionic composition of TSP and PM10 during the Middle Eastern dust (MED) storms in Ahvaz, Iran. Environmental monitoring and assessment, 184(11), 6683–6692.

    Article  CAS  Google Scholar 

  • Shahsavani, A., Naddafi, K., Jafarzade Haghighifard, N., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., et al. (2012b). The evaluation of PM10, PM2.5 and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran from April through September 2010. Journal of Arid Environments, 77, 72–83.

    Article  Google Scholar 

  • Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S. M., Parhizgari, N., et al. (2013). Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29, 279–290.

    Article  Google Scholar 

  • Tam, W. W., Wong, T. W., & Wong, A. H. (2012a). Effect of dust storm events on daily emergency admissions for cardiovascular diseases. Circulation Journal, 76(3), 655–660.

    Article  Google Scholar 

  • Tam, W. W., Wong, T. W., Wong, A. H., & Hui, D. S. (2012b). Effect of dust storm events on daily emergency admissions for respiratory diseases. Respirology, 17(1), 143–148.

    Article  Google Scholar 

  • Tippayawong, N., Khuntong, P., Nitatwichit, C., Khunatorn, Y., & Tantakitti, C. (2009). Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Building and Environment, 44, 188–197.

    Article  Google Scholar 

  • Verma, P., Brown, J. M., Nunez, V. H., Morey, R. E., Steigerwalt, A. G., & Pellegrini, H. A. (2006). Native valve endocarditis due to Gordonia polyisoprenivorans:case report and review of literature of bloodstream infection caused by Gordonia species. Journal of clinical microbiology, 44(5), 1905–1908.

    Article  Google Scholar 

  • Yildis, O., & Doganay, M. (2006). Actinomycoses and nocardia pulmonary infections. Current opinion in pulmonary medicine, 12(3), 224–234.

    Google Scholar 

  • Yuan, Z., Panchal, D., Syed, M. A., Mehta, H., Joo, M., Hadid, W., et al. (2013). Induction of cyclooxygenase signaling by Stomatococcus mucilaginosus highlights the pathogenic potential of an oral commensal. The Journal of Immunology, 191(7), 3810–3817.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is issued from an integrated research of ETRC-9102 as a project number and M.Sc. thesis of Zahra Soleimani. Financial support of both was provided by Ahvaz Jundishapur University of Medical Sciences (AJUMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, Z., Parhizgari, N., Dehdari Rad, H. et al. Normal and dusty days comparison of culturable indoor airborne bacteria in Ahvaz, Iran. Aerobiologia 31, 127–141 (2015). https://doi.org/10.1007/s10453-014-9352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-014-9352-4

Keywords

Navigation