Skip to main content
Log in

T 2 relaxometry measurements in low spatial frequency brain regions differ between fast spin-echo and multiple-echo spin-echo sequences

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Dual-echo fast spin-echo (FSE) sequences are used in T 2 relaxometry studies of neurological disorders because of shorter clinical scanning times and protocol simplicity. However, FSE sequences have possible spatial frequency-dependent effects, and derived T 2 values may include errors that depend on the spatial frequency characteristics of the brain region of interest.

Materials and methods

Dual-echo FSE and multi-echo spin-echo (MESE) sequences were acquired in nine subjects. The T 2 decay curves for FSE and MESE sequences were estimated and percent error maps were generated. T 2 error values were obtained along each patient’s corticospinal tract (CST). Whole-brain white matter (WM) and gray matter (GM) T 2 error values were also obtained. The paired t test was performed to evaluate differences in T 2 values in the CST between FSE and MESE sequences.

Results

Histograms of error values in CST and in whole-brain WM and GM structures revealed systematic errors in FSE sequences. Significant differences (P < 0.001) in CST T 2 values were also observed between FSE and MESE sequences.

Conclusion

Our findings indicate that T 2 values derived from FSE sequences are prone to large errors, even in low spatial frequency regions such as the CST, when compared to MESE sequences. Future studies should be aware of this limitation of FSE sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BET:

Brain extraction tool

CNS:

Central nervous system

CST:

Corticospinal tract

EMG:

Electromyography

FA:

Fractional anisotropy

FAST:

FMRIB’s automated segmentation tool

FLIRT:

FMRIB’s linear image registration tool

FMRIB:

Functional magnetic resonance imaging of brain

FNIRT:

FMRIB’s nonlinear image registration tool

FSE:

Dual-echo fast spin echo

FWHM:

Full width at half maximum

GM:

Gray matter

LMNs:

Lower motor neurons

MESE:

Multi-echo spin echo

MND:

Motor neuron disease

MPRAGE:

Magnetization prepared rapid gradient echo

ROI:

Region of interest

T E :

Echo time

UMNs:

Upper motor neurons

WM:

White matter

References

  1. Minnerop M, Specht K, Ruhlmann J, Grothe C, Wullner U, Klockgether T (2009) In vivo voxel-based relaxometry in amyotrophic lateral sclerosis. J Neurol 256(1):28–34

    Article  PubMed  Google Scholar 

  2. Okujava M, Schulz R, Ebner A, Woermann FG (2002) Measurement of temporal lobe T2 relaxation times using a routine diagnostic MR imaging protocol in epilepsy. Epilepsy Res 48(1–2):131–142

    Article  PubMed  CAS  Google Scholar 

  3. Coan AC, Bonilha L, Morgan PS, Cendes F, Li LM (2006) T2-weighted and T2 relaxometry images in patients with medial temporal lobe epilepsy. J Neuroimaging 16(3):260–265

    Article  PubMed  Google Scholar 

  4. Vymazal J, Klempir J, Jech R et al (2007) MR relaxometry in Huntington’s disease: correlation between imaging, genetic and clinical parameters. J Neurol Sci 263(1–2):20–25

    Article  PubMed  Google Scholar 

  5. Neema M, Goldberg-Zimring D, Guss ZD et al (2009) 3 T MRI relaxometry detects T2 prolongation in the cerebral normal-appearing white matter in multiple sclerosis. Neuroimage 46(3):633–641

    Article  PubMed  Google Scholar 

  6. Mitsumoto H, Chad DA, Pioro EP (1998) Amyotrophic lateral sclerosis. F.A. Davis Company, Philadelphia

    Google Scholar 

  7. Yagishita A, Nakano I, Oda M, Hirano A (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191(2):455–460

    PubMed  CAS  Google Scholar 

  8. Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2(5):541–553

    Article  PubMed  CAS  Google Scholar 

  9. Whittall KP, MacKay AL, Li DK (1999) Are mono-exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? Magn Reson Med 41(6):1255–1257

    Article  PubMed  CAS  Google Scholar 

  10. Duncan JS, Bartlett P, Barker GJ (1996) Technique for measuring hippocampal T2 relaxation time. Am J Neuroradiol 17(10):1805–1810

    PubMed  CAS  Google Scholar 

  11. Jack CR Jr (1996) Hippocampal T2 relaxometry in epilepsy: past, present, and future. Am J Neuroradiol 17(10):1811–1814

    PubMed  Google Scholar 

  12. Hashemi RH, Bradley WG, Lisanti CJ (2004) MRI: the basics, 2nd edn. Lippincott Williams &Wilkins, Philadelphia

  13. Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MPRAGE: a three-dimensional, T1-weighted, gradient-echo sequence—initial experience in the brain. Radiology 182(3):769–775

    PubMed  CAS  Google Scholar 

  14. Carneiro AAO, Vilela GR, de Araujo DB, Baffa O (2006) MRI relaxometry: methods and applications. Braz J Phys 36:9–15

    Google Scholar 

  15. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  16. Jenkinson M (2003) Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 49(1):193–197

    Article  PubMed  Google Scholar 

  17. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Meth Prog Bio 81(2):106–116

    Article  Google Scholar 

  18. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  PubMed  CAS  Google Scholar 

  19. Wakana S, Caprihan A, Panzenboeck MM et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3):630–644

    Article  PubMed  Google Scholar 

  20. Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  PubMed  CAS  Google Scholar 

  21. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  PubMed  Google Scholar 

  22. Zhang Y, Brady M, Smith SM (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  PubMed  CAS  Google Scholar 

  23. Jenkinson M, Bannister PR, Brady JM, Smith SM (2002) Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841

    Article  PubMed  Google Scholar 

  24. Brix G, Kolem H, Nitz WR (2008) Image contrast and Imaging sequence. In: Reiser RF (ed) Magnetic resonance tomography. Springer, Berlin, pp 36–75

    Google Scholar 

  25. Pai A, Li X, Majumdar S (2008) A comparative study at 3 Tesla of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging 26(9):1215–1220

    Article  PubMed  Google Scholar 

  26. Hawnaur JM, Hutchinson CE, Isherwood I (1994) Clinical evaluation of fast spin echo sequences for cranial magnetic resonance imaging at 0.5 Tesla. Br J Radiol 67(797):423–428

    Google Scholar 

  27. Constable RT, Anderson AW, Zhong J, Gore JC (1992) Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging 10(4):497–511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the patients who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. Pioro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, V., Lowe, M.J., Beall, E.B. et al. T 2 relaxometry measurements in low spatial frequency brain regions differ between fast spin-echo and multiple-echo spin-echo sequences. Magn Reson Mater Phy 26, 443–450 (2013). https://doi.org/10.1007/s10334-012-0364-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0364-1

Keywords

Navigation