Skip to main content

Advertisement

Log in

Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis

  • Review Article
  • Theme: Therapeutic and Diagnostic Applications of Exosomes and other Extracellular Vesicles
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cancer Treatment & Survivorship Facts & Figures 2016-2017. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-treatment-and-survivorship-facts-and-figures/cancer-treatment-and-survivorship-facts-and-figures-2016-2017.pdf.

  2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409. https://doi.org/10.1056/NEJMoa1102873.

    Article  Google Scholar 

  3. Aberle DR, Abtin F, Brown K. Computed tomography screening for lung cancer: has it finally arrived? Implications of the national lung screening trial. J Clin Oncol. 2013;31(8):1002–8. https://doi.org/10.1200/JCO.2012.43.3110.

    Article  PubMed Central  Google Scholar 

  4. Patz EF, Pinsky P, Gatsonis C, Sicks JD, Kramer BS, Tammemägi MC, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med. 2014;174:269–74. https://doi.org/10.1001/jamainternmed.2013.12738.

    Article  PubMed Central  Google Scholar 

  5. Chudgar NP, Bucciarelli PR, Jeffries EM, Rizk NP, Park BJ, Adusumilli PS, et al. Results of the national lung cancer screening trial: where are we now? Thorac Surg Clin. 2015;25:145–53. https://doi.org/10.1016/j.thorsurg.2014.11.002.

    Article  PubMed Central  Google Scholar 

  6. Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368:1980–91. https://doi.org/10.1056/NEJMoa1209120.

    Article  Google Scholar 

  7. Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA. 2015;314:1599–614. https://doi.org/10.1001/jama.2015.12783.

    Article  CAS  PubMed Central  Google Scholar 

  8. Bray C, Bell LN, Liang H, Collins D, Yale SH. Colorectal cancer screening. WMJ. 2017;116:27–33.

    Google Scholar 

  9. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48. https://doi.org/10.1038/nrclinonc.2017.14.

    Article  CAS  Google Scholar 

  10. Gingras I, Salgado R, Ignatiadis M. Liquid biopsy: will it be the ‘magic tool’ for monitoring response of solid tumors to anticancer therapies. Curr Opin Oncol. 2015;27:560–7. https://doi.org/10.1097/CCO.0000000000000223.

    Article  CAS  Google Scholar 

  11. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38. https://doi.org/10.1038/nrc.2017.7.

    Article  CAS  Google Scholar 

  12. Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17:3558–77. https://doi.org/10.1039/c7lc00592j.

    Article  CAS  Google Scholar 

  13. He M, Zeng Y. Microfluidic exosome analysis toward liquid biopsy for cancer. J Lab Autom. 2016;21:599–608. https://doi.org/10.1177/2211068216651035.

    Article  CAS  PubMed Central  Google Scholar 

  14. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25. https://doi.org/10.1016/j.ceb.2014.05.004.

    Article  CAS  Google Scholar 

  15. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066.

    Article  Google Scholar 

  16. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42. https://doi.org/10.1007/s10555-013-9441-9.

    Article  CAS  Google Scholar 

  17. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32. https://doi.org/10.1016/j.cell.2016.01.043.

    Article  CAS  Google Scholar 

  18. ELA S, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57. https://doi.org/10.1038/nrd3978.

    Article  Google Scholar 

  19. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208. https://doi.org/10.1038/nri3622.

    Article  CAS  PubMed Central  Google Scholar 

  20. HR M, Bayraktar E, KH G, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017;18 https://doi.org/10.3390/ijms18030538.

  21. Li W, Li C, Zhou T, Liu X, Liu X, Li X, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16:145. https://doi.org/10.1186/s12943-017-0706-8.

    Article  PubMed Central  Google Scholar 

  22. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82. https://doi.org/10.1038/nature14581.

    Article  CAS  PubMed Central  Google Scholar 

  23. Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jorgensen MM. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles. 2015;4:26659. https://doi.org/10.3402/jev.v4.26659.

    Article  Google Scholar 

  24. Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. 2013;68:969–73. https://doi.org/10.1691/ph.2013.3599.

    CAS  Google Scholar 

  25. Clark DJ, Fondrie WE, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteome. 2016;133:161–9. https://doi.org/10.1016/j.jprot.2015.12.023.

    Article  CAS  Google Scholar 

  26. Li XJ, Hayward C, Fong PY, Dominguez M, Hunsucker SW, Lee LW, et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med. 2013;5:207ra142. https://doi.org/10.1126/scitranslmed.3007013.

    PubMed Central  Google Scholar 

  27. Li Y, Zhang Y, Qiu F, Qiu Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis. 2011;32:1976–83. https://doi.org/10.1002/elps.201000598.

    Article  CAS  Google Scholar 

  28. He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14:3773–80. https://doi.org/10.1039/c4lc00662c.

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–96. https://doi.org/10.1039/c5lc01117e.

    Article  CAS  PubMed Central  Google Scholar 

  30. Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun. 2014;5:3591. https://doi.org/10.1038/ncomms4591.

    Article  PubMed Central  Google Scholar 

  31. Jorgensen M, Baek R, Pedersen S, Sondergaard EK, Kristensen SR, Varming K. Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles. 2013;2 https://doi.org/10.3402/jev.v2i0.20920.

  32. Jorgensen MM, Baek R, Varming K. Potentials and capabilities of the extracellular vesicle (EV) array. J Extracell Vesicles. 2015;4:26048. https://doi.org/10.3402/jev.v4.26048.

    Article  Google Scholar 

  33. Baek R, Jorgensen MM. Multiplexed phenotyping of small extracellular vesicles using protein microarray (EV Array). Methods Mol Biol. 2017;1545:117–27. https://doi.org/10.1007/978-1-4939-6728-58.

    Article  CAS  Google Scholar 

  34. Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16:3033–42. https://doi.org/10.1039/c6lc00279j.

    Article  CAS  PubMed Central  Google Scholar 

  35. Liang LG, Kong MQ, Zhou S, Sheng YF, Wang P, Yu T, et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017;7:46224. https://doi.org/10.1038/srep46224.

    Article  PubMed Central  Google Scholar 

  36. Vaidyanathan R, Naghibosadat M, Rauf S, Korbie D, Carrascosa LG, Shiddiky MJ, et al. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem. 2014;86:11125–32. https://doi.org/10.1021/ac502082b.

    Article  CAS  Google Scholar 

  37. Xia Y, Liu M, Wang L, Yan A, He W, Chen M, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15. https://doi.org/10.1016/j.bios.2017.01.063.

    Article  CAS  Google Scholar 

  38. Sina AA, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJ, Trau M. Real time and label free profiling of clinically relevant exosomes. Sci Rep. 2016;6:30460. https://doi.org/10.1038/srep30460.

    Article  CAS  PubMed Central  Google Scholar 

  39. Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86:8857–64. https://doi.org/10.1021/ac5023056.

    Article  CAS  PubMed Central  Google Scholar 

  40. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32(5):490–5. https://doi.org/10.1038/nbt.2886.

    Article  CAS  PubMed Central  Google Scholar 

  41. Zong S, Wang L, Chen C, Lu J, Zhu D, Zhang Y, et al. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods. 2016;8:5001–8. https://doi.org/10.1039/c6ay00406g.

    Article  CAS  Google Scholar 

  42. Wei F, Yang J, Wong DT. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens Bioelectron. 2013;44:115–21. https://doi.org/10.1016/j.bios.2012.12.046.

    Article  CAS  Google Scholar 

  43. Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. Integrated magneto-electrochemical sensor for exosome analysis. ACS Nano. 2016;10:1802–9. https://doi.org/10.1021/acsnano.5b07584.

    Article  CAS  PubMed Central  Google Scholar 

  44. Doldan X, Fagundez P, Cayota A, Laiz J, Tosar JP. Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification. Anal Chem. 2016;88:10466–73. https://doi.org/10.1021/acs.analchem.6b02421.

    Article  CAS  Google Scholar 

  45. Zhou Q, Rahimian A, Son K, Shin DS, Patel T, Revzin A. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2016;97:88–93. https://doi.org/10.1016/j.ymeth.2015.10.012.

    Article  CAS  Google Scholar 

  46. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18:1835–40. https://doi.org/10.1038/nm.2994.

    Article  CAS  PubMed Central  Google Scholar 

  47. Fang S, Tian H, Li X, Jin D, Li X, Kong J, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One. 2017;12:e0175050. https://doi.org/10.1371/journal.pone.0175050.

    Article  PubMed Central  Google Scholar 

  48. Singh P. SPR biosensors: historical perspectives and current challenges. Sensors Actuators B Chem. 2016;229:110–30. https://doi.org/10.1016/j.snb.2016.01.118.

    Article  CAS  Google Scholar 

  49. Rupert DL, Lasser C, Eldh M, Block S, Zhdanov VP, Lotvall JO, et al. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014;86:5929–36. https://doi.org/10.1021/ac500931f.

    Article  CAS  Google Scholar 

  50. Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem. 2015;407:5425–32. https://doi.org/10.1007/s00216-015-8711-5.

    Article  CAS  PubMed Central  Google Scholar 

  51. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93. https://doi.org/10.1021/cr068107d.

    Article  CAS  Google Scholar 

  52. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521. https://doi.org/10.1021/cr068126n.

    Article  CAS  Google Scholar 

  53. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53. https://doi.org/10.1038/nmat2162.

    Article  CAS  Google Scholar 

  54. Im H, Shao H, Weissleder R, Castro CM, Lee H. Nano-plasmonic exosome diagnostics. Expert Rev Mol Diagn. 2015;15:725–33. https://doi.org/10.1586/14737159.2015.1041378.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the funding support from National Cancer Institute of the National Institutes of Health under award number 5R33CA191245. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wu.

Additional information

Guest Editors: Juliane Nguyen and Steven Jay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yang, Y. & Wu, Y. Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis. AAPS J 20, 41 (2018). https://doi.org/10.1208/s12248-018-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0201-1

KEY WORDS

Navigation