New Acquisitions Shelf

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

5 hits in 0.011 seconds
Refine your search
Collection
Years
Year
Select All   Deselect All   Toggle Selection   Add To Mindlist   Mail Export   File Export
feed icon
1.
E-BOOK
Sustainable Urbanization (2016)
Rijeka, Croatia : InTech
Keywords: urbanization ; sustainability ; environmental sciences
Notes: The rapid urbanization that began with industrialization has begun to cause many problems. New approaches are emerging today to minimize these problems and make urban areas more livable. These problems include insufficient social facilities in urban areas for increasing populations due to migration and unbalanced use of green areas, water, and energy resources due to urbanization. Careless consumption and the pollution of natural resources will cause people many more problems in the future than they do today in urban development. Many professional disciplines have noticed this unbalanced development in urban areas. Urban areas have larger populations than rural areas today. Urban areas are developed neglectfully. Sustainability is needed as a criterion for urban areas to develop in a more livable and healthy fashion. Sustainable urban development approaches are seen in many fields, ranging from land use to the use of natural resources in urban areas.
Pages: 342 S.
ISBN: 978-953-51-2652-2
2.
E-BOOK
Updates in Volcanology : From Volcano Modelling to Volcano Geology (2016)
Rijeka, Croatia : InTech
Keywords: volcanology ; geology ; geophysics
Notes: Updates in Volcanology - From Volcano Modeling to Volcano Geology is a new book that is based on book chapters offered by various authors to provide a snapshot of current trends in volcanological researches. Following a short Introduction, the book consists of three sections, namely, "Understanding the Volcano System from Petrology, Geophysics to Large Scale Experiments", "Volcanic Eruptions and Their Impact to the Environment", and "Volcanism in the Geological Record". These sections collect a total of 13 book chapters demonstrating clearly the research activity in volcanology from geophysical aspects of volcanic systems to their geological framework. Each chapter provides a comprehensive summary of their subject’s current research directions. This book hence can equally be useful for students and researchers.
Pages: 422 S.
ISBN: 978-953-51-2622-5
3.
E-BOOK
Greenhouse Gases : Selected Case Studies (2016)
Rijeka, Croatia : InTech
Keywords: greenhouse gases ; global warming ; climate change
Notes: Greenhouse Gases - Selected Case Studies, is a book which covers a range of topics. The long term effective management of the natural environment, requires a detailed understanding of greenhouse gases. This has both environmental and economic implications, especially where there is any anthropogenic involvement. Numerical models are often the tool and framework used for predicting the effects, both in the long-term and short-term, of greenhouse gases. However, the relevant atmospheric processes can vary quite considerably depending upon the spatial and temporal scales under consideration. For this reason for the past few decades, scientists, engineers, meteorologists and mathematicians have all been continuing to conduct research into the many aspects which influence greenhouse gases. These issues range from: industrial science, agricultural research, carbon dioxide and other emissions. This book reports the findings from recent research in greenhouse gases, primarily in the the form of case studies, particularly from an interdisciplinary perspective. The research was carried out by researchers who specialise in areas such as: energy production, emissions from livestock, chemical industry, and metallurgical process technology.
Pages: 88 S.
ISBN: 978-953-51-2682-9
4.
E-BOOK
Pore-Scale Geochemical Processes (2015)
Chantilly, Va. : Mineralogical Society of America
Notes: The pore scale is readily recognizable to geochemists, and yet in the past it has not received a great deal of attention as a distinct scale or environment that is associated with its own set of questions and challenges. Is the pore scale merely an environment in which smaller scale (molecular) processes aggregate, or are there emergent phenomena unique to this scale? Is it simply a finer-grained version of the “continuum” scale that is addressed in larger-scale models and interpretations? We would argue that the scale is important because it accounts for the pore architecture within which such diverse processes as multi-mineral reaction networks, microbial community interaction, and transport play out, giving rise to new geochemical behavior that might not be understood or predicted by considering smaller or larger scales alone. Fortunately, the last few years have seen a marked increase in the interest in pore-scale geochemical and mineralogical topics, making a Reviews in Mineralogy and Geochemistry volume on the subject timely. The volume had its origins in a special theme session at the 2015 Goldschmidt Conference, Prague, Czech Republic, August 16-21, 2015, where at least some of the contributors to this volume gave presentations. From the diversity of pore-scale topics in the session that spanned the range from multi-scale characterization to modeling, it became clear that the time was right for a volume that would summarize the state of the science. Based in part on the evidence in the chapters included here, we would argue that the convergence of state of the art microscopic characterization and high performance pore scale reactive transport modeling has made it possible to address a number of long-standing questions and enigmas in the Earth and Environmental Sciences. Among these is the so-called “laboratory-field discrepancy” in geochemical reaction rates, which may be traceable in part to the failure to consider porescale geochemical issues that include chemical and physical heterogeneity, suppression of precipitation in nanopores, and transport limitations to and from reactive mineral surfaces. This RiMG volume includes contributions that review experimental, characterization, and modeling advances in our understanding of pore-scale geochemical processes. The volume begins with chapters authored or co-authored by two of the éminences grises in the field of pore-scale geochemistry and mineralogy, two who have made what is perhaps the strongest case that the pore-scale is distinct and requires special consideration in geochemistry. The chapter by Andrew Putnis gives a high level overview of how the pore-scale architecture of natural porous media impacts geochemical processes, and how porosity evolves as a result of these. The chapter makes the first mention of what is an important theme in this volume, namely the modification of thermodynamics and kinetics in small pores. In a chapter authored by Røyne and Jamtveit, the authors investigate the effects of mineral precipitation on porosity and permeability modification of rock. Their principal focus is on the case where porosity reduction results in fracturing of the rock, in the absence of which the reactions will be suppressed due to the lack of pore space. The next chapter by Emmanuel, Anovitz, and Day-Stirrat addresses chemo-mechanical processes and how they affect porosity evolution in geological media. The next chapter by Anovitz and Cole provides a comprehensive review of the approaches for characterizing and analyzing porosity in porous media. Small angle neutron scattering (SANS) plays prominently as a technique in this chapter. Stack presents a review of what is known about mineral precipitation in pores and how this may differ from precipitation in bulk solution. Liu, Liu, Kerisit, and Zachara focus on porescale process coupling and the determination of effective (or upscaled) surface reaction rates in heterogeneous subsurface materials. Micro-continuum modeling approaches are investigated by Steefel, Beckingham, and Landrot, where the case is made that these may provide a useful tool where the computationally more expensive pore and pore network models are not feasible. The next chapter by Noiriel pursues the focus on characterization techniques with a review of X-ray microtomography (especially synchrotron-based) and how it can be used to investigate dynamic geochemical and physical processes in porous media. Tournassat and Steefel focus on a special class of micro-continuum models that include an explicit treatment of electrostatic effects, which are particularly important in the case of clays or clay-rich rock. Navarre-Sitchler, Brantley, and Rother present an overview of our current understanding of how porosity increases as a result of chemical weathering in silicate rocks, bringing to bear a range of characterization and modeling approaches that build toward a more quantitative description of the process. In the next chapter, Druhan, Brown, and Huber demonstrate how isotopic gradients across fluid–mineral boundaries can develop and how they provide insight into pore-scale processes. Yoon, Kang, and Valocchi provide a comprehensive review of lattice Boltzmann modeling techniques for pore-scale processes. Mehmani and Balhoff summarize mesoscale and hybrid models for flow and transport at the pore scale, including a discussion of the important class of models referred to as “pore network” that typically can operate at a larger scale than is possible with the true pore-scale models. Molins addresses the problem of how to represent interfaces (solid–fluid) at the pore scale using direct numerical simulation.
Pages: xiv, 491 S.
ISBN: 978-0-939950-96-6
5.
E-BOOK
Highly Siderophile and Strongly Chalcophile Elements : in High-Temperature Geochemistry and Cosmochemistry (2016)
Chantilly, Va. : Mineralogical Society of America
Notes: In high-temperature geochemistry and cosmochemistry, highly siderophile and strongly chalophile elements can be defined as strongly preferring metal or sulfide, respectively, relative to silicate or oxide phases. The highly siderophile elements (HSE) comprise Re, Os, Ir, Ru, Pt, Rh, Pd, and Au and are defined by their extreme partitioning (>104) into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The HSE are highly refractory, as indicated by their high melting and condensation temperatures and were therefore concentrated in early accreted nebular materials. Within the HSE are the platinum-group elements (PGE), which include the six elements lying in the d-block of the periodic table (groups 8, 9, and 10, periods 5 and 6), i.e., Os, Ir, Ru, Pt, Rh and Pd. These six elements tend to exist in the metallic state, or bond with chalcogens (S, Se, Te) or pnictogens (P, As, Sb, Bi). Rhenium and Au do not necessarily behave as coherently as the PGE, due to their differing electronegativity and oxidation states. For these reasons, a clear definition between the discussion of the PGE and the HSE (PGE, Re and Au) exists in the literature, especially in economic geology, industrial, or bio-medical studies. The strongly chalcophile elements can be considered to include S, Se, and Te. These three elements are distinguished from other chalcophile elements, such as Cd or Pb, because, like the HSE, they are all in very low abundances in the bulk silicate Earth. By contrast with the HSE, S, Se, and Te all have far lower melting and condensation temperatures, classifying them as highly volatile elements. Moreover, these elements are not equally distributed within chondrite meteorite groups. Since their initial distribution in the Solar nebula, planetary formation and differentiation process have led to large fractionations of the HSE and strongly chalcophile elements, producing a range of absolute and relative inter-element fractionations. The chemical properties of the HSE, that set them apart from any other elements in the periodic table, have made them geochemical tracers par excellence. As tracers of key processes, the HSE have found application in virtually all areas of the physical Earth sciences. These elements have been used to inform on the nucleosynthetic sources and formation of the Solar System, planetary differentiation, late accretion addition of elements to planets, core-formation and possible core-mantle interaction, crust-mantle partitioning, volcanic processes and outgassing, formation of magmatic, hydrothermal and epithermal ore deposits, ocean circulation, climate-related events, weathering, and biogeochemical cycling. More recently, studies of strongly chalcophile elements are finding a similar range of applications. Their utility lies in the fact that these elements will behave as siderophile or strongly chalcophile elements under reducing conditions, but will also behave as lithophile or atmophile elements under oxidizing conditions, as experienced at the present day Earth’s surface. A key aspect of the HSE is that three long-lived, geologically useful decay systems exist with the HSE as parent (107Pd–107Ag), or parent–daughter isotopes (187Re–187Os and 190Pt–186Os). This volume is dedicated to some of the processes that can be investigated at high-temperatures in planets using the HSE and strongly chalcophile elements. While this volume is not dedicated to the practical applications of the HSE and strongly chalcophile elements, it would be remiss not to briefly discuss the importance of these elements in society. All of these elements have found important societal use, from the application of Au as a valued commodity in early societies, through to the present-day; the importance of S and Se in biological processes; the discovery and implementation of Pt, Pd, and subsequently other PGE to catalytic oxidation, and the importance of the anti-cancer drug cisplatin (cis-[Pt(NH3)2Cl2]) to anti-tumour treatments. The use of the PGE, most especially Pt, Pd and Rh, in the automotive industry to generate harmless gases has caused some potential collateral effects; the possible environmental impact and human health-risks from available PGE in the environment. An entire volume can (and should!) equally be written on the utility of the HSE and strongly chalcophile elements during low-temperature geochemistry. In this volume, a number of key areas are reviewed in the use of the HSE and strongly chalcophile elements to investigate fundamental processes in high-temperature geochemistry and cosmochemistry. It is divided into five parts. The first part of the volume concerns measurements and experiments. Chapter 1, by Brenan et al. (2016), provides an comprehensive overview of experimental constraints applied to understanding HSE partitioning under a range of conditions, including: liquid metal–solid metal; metal– silicate; silicate–melt; monosulfide solid solution (MSS)–sulfide melt; sulfide melt–silicate melt; silicate melt–aqueous fluid–vapor. Chapter 2, by Meisel and Horan (2016) provides a summary of analytical methods, issues specifically associated with measurement of the HSE, and a review of important reference materials. The second part of the volume concerns the cosmochemical importance of the HSE and strongly chalcophile elements. In their assessment of nucleosynthetic isotopic variations of siderophile and chalcophile elements in Solar System materials, Yokoyama and Walker (2016, Chapter 3) discuss some of the fundamentals of stellar nucleosynthesis, the evidence for nucleosynthetic anomalies in pre-Solar grains, bulk meteorites and individual components of chondrites, ultimately providing a synthesis on the different information afforded by nucleosynthetic anomalies of Ru, Mo, Os, and other siderophile and chalcophile elements. Chapter 4 concerns the HSE in terrestrial bodies, including the Earth, Moon, Mars and asteroidal bodies for which we have materials as meteorites. Day et al. (2016) provide a summary of HSE abundance and 187Os/188Os variations in the range of materials available and a synthesis of initial Solar System composition, evidence for late accretion, and estimates of current planetary mantle composition. The third part of the volume concerns our understanding of the Earth’s mantle from direct study of mantle materials. In Chapter 5, Aulbach et al. (2016) discuss the importance and challenges associated with understanding HSE in the cratonic mantle, providing new HSE alloy solubility modelling for melt extraction at pressures, temperatures, fO2 and fS2 pertaining to conditions of cratonic mantle lithosphere formation. Luguet and Reisberg (2016) provide similar constraints on non-cratonic mantle in Chapter 6, emphasizing the importance of combined geochemical and petrological approaches to fully understand the histories of mantle peridotites. The information derived from studies of Alpine peridotites, obducted ophiolites and oceanic abyssal peridotites are reviewed in Chapter 7 by Becker and Dale (2016). The fourth part of the volume focusses on important minerals present in the mantle and crust. Chapter 8 provides a broad overview of mantle chalcophiles. In this chapter, Lorand et al. (2016) emphasise that chalcophile and siderophile elements are important tracers that can be strongly affected by host minerals as a function of sulfur-saturation, redox conditions, pressure, temperature, fugacity of sulfur, and silicate melt compositions. Along a similar theme in Chapter 9, O’Driscoll and Gonzalez-Jimenez (2016) provide an overview of platinum-group minerals (PGM), pointing out that, where present PGM dominate the HSE budget of silicate rocks. Finally in this section, Harvey et al. (2016) examine the importance of Re–Os–Pb isotope dating methods of sulfides for improving our understanding of mantle processes (Chapter 10). The fifth and final part of the volume considers the important of the HSE for studying volcanic and magmatic processes. In Chapter 11, Gannoun et al. (2016) provide a synthesis of the most abundant forms of volcanism currently operating on Earth, including mid-ocean ridge basalts, volcanism unassociated with plate boundaries, and subduction zone magmatism. The volume is completed in Chapter 12 by Barnes and Ripley (2016), by an appraisal of the obvious importance of magmatic HSE ore formation in Earth’s crust.
Pages: xxiii, 774 S.
ISBN: 978-0-939950-97-3

Top