ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (232)
Collection
  • Articles  (232)
Publisher
Years
Journal
  • 1
    Publication Date: 2021-10-28
    Description: Global access to sanitary water is of utmost importance to human health. Presently, textile dye water pollution and cigarette pollution are both plaguing the environment. Herein, waste cigarette filters (CFs) are converted into useful carbon-based adsorbent materials via a facile, microwave-assisted carbonization procedure. The CFs are activated and co-doped with phosphorus and nitrogen simultaneously to enhance their surface characteristics and adsorbent capability by introducing chemisorptive binding sites to the surface. The doped carbonized CF (DCCF) and undoped carbonized CF (CCF) adsorbents are characterized physically to examine their surface area, elemental composition, and surface charge properties. The maximum adsorption capacity of synthesized adsorbents was determined via batch adsorption experiments and Langmuir modelling. Additionally, the influence of different parameters on the adsorption process was studied by varying the adsorption conditions such as adsorbent dosage, initial concentration, contact time, temperature, and pH. The DCCF adsorbent showed a maximum adsorption capacity of 303 mg g− 1. Adsorption of both adsorbents fit best to Langmuir model and pseudo-second order kinetics, indicating chemisorptive mechanism. Both adsorbents showed endothermic adsorption process which is indicated by increasing adsorption capacity with increased temperatures. DCCF exhibited greater adsorption capability than CCF at all temperatures from 25 to 55 °C. The pH of the solution significantly affected the adsorption capacity of CCF while DCCF adsorption is favorable at a wide pH range due to low value of the adsorbent’s point of zero charge. Reusability results showed that both adsorbents can be used over several cycles for removal of dye. Thus, results conclude that the waste DCCF-based adsorbent does not only show a profound potential as a sustainable solution to combat textile dye water pollution but also addresses the valuable use of the CF pollution simultaneously. This approach, which can target two major pollutants, is attractive due to its ease of preparation, negligible cost, and versatility in application.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-19
    Description: The annual worldwide production of coffee exceeds 10 million tons, and more than 90% of this production is waste, including the husk. On the other hand, plastic consumption increases every year, and sustainable alternatives are necessary to decrease it. This work arises to solve these two problems, and seeks to produce products at an industrial level from polyethylene/coffee husk eco-composites. Both Low Density Polyethylene and High Density Polyethylene were used, and the amounts of coffee husk added as filler were 20 and 40 wt%. The composites were characterized by different morphological, thermal and mechanical techniques. Scanning Electron Microscopy images showed husk particles embedded in the polymer matrix, but with some gaps between the polymer and the filler, because no compatibilizer agent was used. The addition of large amounts of natural filler negatively affected the tensile strength and elongation at break, but increases eco-composites crystallinity, and hence, their Young modulus and hardness. The industrial applicability of the eco-composites was verified through the production of five different consumer products by extrusion and injection processes, using mixtures with 40 wt% coffee husks. All products were obtained without significant defects. If only 3.25 wt% of the polyethylene products produced each year in Colombia did so with the eco-composites developed in this work, all the coffee husk produced in the country would be used, and the emission of about 5.390 million m3 of greenhouse gases would be avoided.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-19
    Description: The treatment of tannery wastewaters is a complex task due to the complexity of the waste: a mixture of several pollutants, both anionic and cationic as well as organic macromolecules which are very hard to treat for disposal all together. Geopolymers are a class of inorganic binders obtained by alkali activation of aluminosilicate powders at room temperature. Such activation process leads to a cement like matrix that drastically decreases mobility of several components via entrapment. This process taking place in the matrix can be hypothesized to be the in-situ formation of zeolite structures. In this work we use a metakaolin based geopolymer to tackle the problem directly in an actual industrial environment. To obtain a geopolymer, the metakaolin was mixed with 10 wt% of wastewater added with sodium hydroxide and sodium silicate as activating solutions. This process allowed a rapid consolidation at room temperature, the average compressive strength was between 14 and 43 MPa. Leaching tests performed at different aging times confirm a high immobilization efficiency close to 100%. In particular, only the 0.008 and 2.31% of Chromium and Chlorides respectively are released in the leaching test after 7 months of aging.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-09
    Description: Environmental risks imposed by anti-cancer drugs and their degradation products are a major concern worldwide. The consumption of anticancer drugs is increasing throughout the years and conventional water treatment processes seem to be ineffective for their removal. The aim of this study is to analyze the consumption of anticancer drugs in Lebanon and assess their potential health hazard as contaminants of the Lebanese surface waters. Anticancer drugs consumption data between the years 2013 and 2018 were collected and the following parameters were calculated: yearly consumption of single active ingredients, yearly consumption of drug equivalents (for drugs belonging to the same pharmacologic class having the same active ingredient) and Predicted Environmental Concentrations (PECs). The obtained PEC values were used to stratify compounds into risk categories. The top five most commonly consumed drugs are Mycophenolate mofetil, Hydroxycarbamide, Capecitibine, Mycophenolic acid and Azathioprine. Based on the calculated PEC values of single active ingredients as well as their equivalents, six high-risk priority compounds were identified: Mycophenolate mofetil, Hydroxycarbamide, Capecitibine, Mycophenolic acid, Azathioprine and 5-Fluorouracil. The impact of these micropollutants on animals as well as humans was analyzed. This research stresses the importance of further analysis of chemotherapy micropollutants with major focus on high-risk drugs. Additionally, regulations should be set in place to ensure proper management of wastewater and the development of efficient wastewater treatment plants.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-22
    Description: Arsenic is a carcinogenic substance, with many cases of poisoning related to arsenic pollution in groundwater. In Taiwan arsenic in groundwater caused the notorious Blackfoot disease. Methods for arsenic removal from water include precipitation, membrane processes, ion exchange, and adsorption, but these processing technologies suffer from high investment costs and complex operations. The traditional adsorption method cannot be used for arsenic removal due to its high operating costs, difficulties in recovery, and low adsorption capacity. To address these issues, this study designed an adsorption material based on biochar for arsenic removal with higher adsorption properties and easy recovery. Biochar sources are readily available from waste wood as a cheap and environmentally friendly material. The efficiency of As (III) removal is also promoted by FeCl3 and KMnO4. The objectives of this research are to obtain optimum operation conditions by assessing the effects of different iron and manganese contents, different doses, different pH and different initial concentration. The adsorption mechanism between As (III) and biochar was studied by adsorption isotherms and the kinetic model. X-ray diffraction, energy-dispersive X-ray spectroscopy and elemental analyzer analysis results show that modified biochar has major elements of Fe and Mn. There is greater magnetism, 40 emu g− 1, in the modified biochar. The maximum adsorption efficiency of 81% and 0.72 mg g− 1 capacity occurs when the ratio of Mn, Fe and C is 4:1:1. The adsorption capacity is high under higher pH with pristine biochar and 1FeC under lower pH with 1Fe2MnC. The reaction mechanism is divided into four pathways. The first pathway is the attachment of As (III) ions into the pore of biochar via physical adsorption. In the second pathway, biochar can connect with As (III) through hydrogen bonding from the function group -OH in the biochar and the As (III) itself. In the third pathway, they can contact each other by electron force when the biochar surface is filled with a positive charge. In the fourth pathway, the compounds of manganese have strong oxidizability to oxidize As (III) to As(V). The iron ions then act as a bridge connecting the biochar and the As (III), resulting in the formation of new complex compounds.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-25
    Description: Aiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-25
    Description: The drinking water treatment plants (DWTPs) in the developing countries urgently need an efficient pre-treatment for nitrate (NO3−) removal to cope with the increasing NO3− pollution in raw water. An upflow sludge blanket (USB) reactor applied for NO3− removal from domestic wastewater may be adopted by the DWTPs. However, studies on the optimal carbon-to-nitrogen ratio (C/N) and operation of USB reactor at short hydraulic retention times (HRT) for high-rate polluted raw water pre-treatment are lacking. In this study, we first investigated the optimal C/N for biological NO3− removal in a sequencing batch reactor (SBR). An USB reactor was then operated with the optimal C/N for pre-treating synthetic raw water contaminated with NO3− (40 mg N L− 1) to monitor the NO3− removal performance and to examine opportunities for reducing the HRT. After operating the SBR with designed C/N of 4, 3 and 2 g C g− 1 N, we selected C/N of 3 g C g− 1 N as the optimal ratio due to the lower carbon breakthrough and nitrite (NO2−) accumulation in the SBR. The USB reactor achieved complete NO3− and NO2− removal with a lower designed C/N of 2 g C g− 1 N due to the longer sludge retention time when compared with that of SBR (10 d). The high specific denitrification rate (18.7 ± 3.6 mg N g− 1 mixed liquor volatile suspended solids h− 1) suggested a possible HRT reduction to 36 min. We successfully demonstrated an USB reactor for high-rate NO3− removal, which could be a promising technology for DWTPs to pre-treat raw water sources polluted with NO3−.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-24
    Description: Leachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was 〉 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and 〉  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was 〉 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was 〉 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was 〉 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-19
    Description: The purification of the primary treated domestic sewage was performed in the present study through the horizontal sub-surface flow constructed wetland (CW) of 10 × 3.5 m dimension. The study was performed using three setups of CW 1 (Unplanted CW), CW 2 (CW planted with macrophyte Typha latifolia), and CW 3 (CW planted with two species of macrophyte T. latifolia and Commelina benghalensis). The purification experiments were performed by converting one type of CW into the other form sequentially, i.e., CW 1 was built first and after the experiments, it was converted into CW 2 and then CW 3. The CW was filled with a layer of coarse and fine gravel of 70 cm depth as filter media in 1:2 ratio. Each set of wetland was operated for 3 months (12 wk) during which the treatment performance of wetlands for basic physicochemical parameters was evaluated. The CW was operated in continuous mode at an average hydraulic loading rate of 250 L h− 1 and the treated effluent was analysed twice every week at four different sampling points having hydraulic retention times (HRT) of 12, 24, 36 and 48 h for important sewage quality parameters All the three setups of CW were able to clean the primary treated sewage significantly. Among the three sets of wetlands used, CW 3 was the best performer removing 79, 77, 79, 79, and 78% of biochemical oxygen demand, chemical oxygen demand, nitrate, ammonia, and phosphate respectively in 48 h HRT. Among the three sets of wetlands, the CW 3 removed the highest percent of total coliforms, fecal coliforms, and E. coli as 64, 61 and 52% respectively.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-11
    Description: Due to the outbreak of the novel coronavirus disease there is a need for public water supply of the highest quality. Adequate levels of chlorine allow immediate elimination of harmful bacteria and viruses and provide a protective residual throughout the drinking water distribution network (DWDN). Therefore, a residual chlorine decay model was developed to predict chlorine levels in a real drinking water distribution network. The model allowed determining human exposure to drinking water with a deficit of residual chlorine, considering that it is currently necessary for the population to have clean water to combat coronavirus Covid 19. The chlorine bulk decay rates (kb) and the reaction constant of chlorine with the pipe wall (kw) were experimentally determined. Average kb and kw values of 3.7 d− 1 and 0.066 m d− 1 were obtained, respectively. The values of kb and kw were used in EPANET to simulate the chlorine concentrations in a DWDN. The residual chlorine concentrations simulated by the properly calibrated and validated model were notably close to the actual concentrations measured at different points of the DWDN. The results showed that maintaining a chlorine concentration of 0.87 mg L− 1 in the distribution tank, the residual chlorine values in the nodes complied with the Ecuadorian standard (0.3 mg L− 1); meanwhile, about 45% of the nodes did not comply with what is recommended by the WHO as a mechanism to combat the current pandemic (0.5 mg L− 1). This study demonstrated that residual chlorine modeling is a valuable tool for monitoring water quality in the distribution network, allowing to control residual chlorine levels in this pandemic season.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...