ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (140)
Collection
  • Articles  (140)
Years
Journal
  • 1
    Publication Date: 2021-10-25
    Description: In this study, the compressive strength and the permeation properties of fly ash-based Geopolymer were experimentally investigated. Type 2 Portland cement (T2PC) was partially or entirely replaced with 0, 10, 20, 30, 50, 70, and 100% of fly ash (FA). The laboratory tests were conducted for compressive strength at 7, 28, and 90 days, and permeation properties such as water absorption at 7 and 28 days. The main goal was to produce eco-friendly concrete with high strength and low permeability through blending cementitious materials including low Calcium (Ca) (T2PC and FA) for protecting concrete against sulphate attacks and other chemically destructive compounds in the environment. This study focused on the effectiveness of the curing period, combinations of chemical activators by varying the molarity of alkaline solutions between 4.16 and 12.96 M and keeping the sodium silicate (SS) to sodium hydroxide (SH) by the weight ratio of 2.5. Lab observations from this study demonstrated that the compressive strength was enhanced with the increment in fly ash content at all ages, with optimum being at 20% as the replacement of T2PC.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-22
    Description: Metal–ceramic composites are obtained via ex-situ or in-situ routes. The in-situ route implies the synthesis of reinforcement in the presence of a matrix and is often regarded as providing more flexibility to the microstructure design of composites than the ex-situ route. Spark plasma sintering (SPS) is an advanced sintering method that allows fast consolidation of various powder materials up to full or nearly full density. In reactive SPS, the synthesis and consolidation are combined in a single processing step, which corresponds to the in-situ route. In this article, we discuss the peculiarities of synthesis of ceramic reinforcements in metallic matrices during SPS with a particular consideration of reactant/matrix mutual chemistry. The formation of carbide reinforcements in Cu, Al, and Ni matrices is given attention with examples elaborated in the authors’ own research. Factors determining the suitability of reactive SPS for manufacturing of composites from a matrix/reactants system and features of the structural evolution of the reaction mixture during sintering are discussed.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-21
    Description: In this work, Zn2+-doped TiO2:WO3 nanostructured films, with different doping levels, were produced by electrospinning followed by sintering, and tested as potential materials for relative humidity (RH) detection. The materials microstructure was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). The electrical characterization was performed by electrical impedance spectroscopy in the range of 400 HZ–40 MHZ, at 20 °C. The sensors’ sensitivity to moisture was evaluated from the impedance variations in response to changes in RH (10–100%). The analyses confirmed the interaction of water molecules with the oxides surface, and showed that zinc atoms were incorporated into the titanium vacancies in the crystal lattice. All the studied sensors showed a p- to n-type conduction transition taking place at around 40% RH. The nanocomposite with 2 wt% of dopant presented the best sensitivity to moisture, with an impedance variation of about 1 order of magnitude. The results are discussed in relation to the microstructure and fabrication route.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-20
    Description: Electroactive polymers (EAPs) are an advanced family of polymers that change their shape through electric stimulation and have been a point of interest since their inception. This unique functionality has helped EAPs to contribute to versatile fields, such as electrical, biomedical, and robotics, to name a few. Ionic EAPs have a significant advantage over electronic EAPs. For example, Ionic EAPs require a lower voltage to activate than electronic EAPs. On the other hand, electronic EAPs could generate a relatively larger actuation force. Therefore, efforts have been focused on improving both kinds to achieve superior properties. In this review, the synthesis routes of different EAP-based actuators and their properties are discussed. Moreover, their mechanical interactions have been investigated from a tribological perspective as all these EAPs undergo surface interactions. Such interactions could reduce their useful life and need significant research attention for enhancing their life. Recent advancements and numerous applications of EAPs in various sectors are also discussed in this review.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-16
    Description: Lanthanum molybdenum oxide (La2Mo2O9, LAMOX)-based ion conductors have been used as potential electrolytes for solid oxide fuel cells. The parent compound La2Mo2O9 undergoes a structural phase transition from monoclinic (P21) to cubic (P213) at 580 °C, with an enhancement in oxide ion conductivity. The cubic phase is of interest because it is beneficial for oxide ion conduction. In search of alternative candidates with a similar structure that might have a stable cubic phase at lower temperatures, we have studied the variations of the crystal structure and ionic conductivity for 25, 50, 62.5 and 75 mol% W substitutions at the Mo site using high-temperature X-ray diffraction, dilatometry, and impedance spectroscopy. Highly dense ceramic samples have been synthesized by solid-state reaction in a two-step sintering process. Low-angle X-ray diffraction and Rietveld refinement confirm the stabilization of the cubic phase for all compounds in the entire temperature range considered. The substitutions of W at the Mo site produce a decrement in the lattice parameter. The thermal expansion coefficients in the high-temperature range of the W-substituted ceramics, as determined by dilatometry, are much higher than that of the unmodified sample. The impedance spectra have been modeled using a modified genetic algorithm within 300–600 °C. A distribution function of the relaxation times is obtained, and the contributions of ohmic drop, grains and grain boundaries to the conductivity have been identified. Overall, our investigation provides information about cationic substitution and insights into the understanding of oxide ion conductivity in LAMOX-based compounds for developing solid oxide fuel cells.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-07
    Description: The present work shows the path towards the industrial production of ceramic tiles containing a high amount of recycling materials in the substitution of natural raw materials. Starting from the applied research at laboratory scale, which is able to demonstrate the work feasibility, other important milestones consist of pilot scale production until the proper industrial production. Finally, when all these steps are positively achieved, the practice is consolidated and it is possible to reach the concrete sustainability benefits (social, environmental and economic). The results of an industry driven project that aimed to produce porcelain stoneware tiles containing 85% of recycled materials were selected to show this path. This innovative ceramic product—containing soda-lime scrap glass from urban-separated collection (post-consumer waste) and unfired scrap tiles from industrial ceramic process (pre-consumer waste)—was sintered about 200 °C lower than a traditional porcelain stoneware tile. It maintains high technical performances belonging to class BIa of the International Standard of ceramic tile classification (EN ISO 14411). Moreover, this product fulfils the standard requirements for dry-pressed ceramic tiles with low water absorption (≤0.5%), and it obtained the certification UNI Keymark. The LCA study was also performed and the results showed a significantly lower environmental impact of this innovative product compared to a traditional porcelain stoneware tile.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-05
    Description: Tailoring electrical and mechanical properties in the fluorite oxides family is of great interest for technological applications. Other than doping and substitution, entropy-driven stabilization is an emerging technique for new solid solutions formation and enhancing or exploring new functionalities. However, there is a high number of possible combinations for higher-order diagram investigations, and the current state of the art shows limited possibilities in predicting phase formation and related properties. In this paper, we expand the compositional space of fluorite oxides in ZrO2-HfO2-CeO2-Nb2O5-RE2O3 systems. X-ray diffractometry and scanning electron microscopy measurements showed the formation of cubic fluorite-type structures when processing compositions at 1600 °C.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-31
    Description: Objective: This study aimed to investigate and compare the effect of various surface treatments on the micromorphology and the roughness of four CAD/CAM lithium silicate-based glass-ceramics (LSGC). Method: Eighty specimens of four LDGC materials (IPS e. max® CAD (Ivoclar-Vivadent, Liechtenstein, Schaan), Vita Suprinity® (Vita Zahnfabrik, Bad Säckingen, Germany), Celtra Duo® (Dentsply, Hanau-Wolfgang, Germany) and n!ce (Straumann, Basel, Switzerland)) were used for this study. All specimens were highly polished with 400, 600, 1200 grit silicon carbide paper and then polished with 3 µm and 1 µm polycrystalline diamond suspension liquid with grinding devices. Each group of ceramic was assigned to one of the following three surface treatments (1) sand-blasting (SB) with 50 µm Al2O3 at 70 psi for 10s, (2) hydrofluoric acid etching (HF) with 5% hydrofluoric acid, according to the manufacturer instructions, (3) and a combination of sand-blasting and hydrofluoric acid (SB + HF). All specimens were cleaned with ethanol for 2 min and placed in an ultrasonic unit with distilled water for 15 min. The microstructure was analyzed by scanning electron microscopy (SEM). The surface roughness and topography were evaluated with atomic force microscopy in tapping mode (AFM). Statistical analysis was done using two-way ANOVA and Tukey tests (α = 5%). Results: All surface treatments had a significant effect on LDGC surface roughness compared to the untreated surface (p 〈 0.05). The sand-blasting treatment had a significantly higher mean surface roughness value for Vita Suprinity and Celtra Duo compared to other surface treatments (p 〈 0.05). However, there was no significant difference for surface roughness between sand-blasting and sand-blasting + etching for e.max CAD and n!ce. The hydrofluoric acid produced less surface roughness compared to other surface treatments but was able to change the surface structure. (5) Conclusions: The sand-blasting + etching treatment could be a sufficient method to produce surface roughness for all LSGC types.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-09
    Description: In this paper, we examined the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics fabricated by various routes and discussed the most important conditions affecting their dielectric behavior. We prepared feedstock powder using a molten salt route and compared it with a commercial powder. Both powders were sintered using SPS. For some samples, annealing was applied after sintering. Other samples were obtained by high-pressure forming and conventional sintering, using both powders. Phase composition, porosity and microhardness were evaluated in comparison with the literature. The results showed that a sintering temperature just below or equal to 1000 °C should be set for the SPS process. However, the best dielectric characteristics were obtained in samples prepared by high-pressure forming and conventional sintering, which showed a relative permittivity of 22,000 and a loss tangent of 0.13 at 1 MHz.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-28
    Description: This study was performed as an adjunct to an existing clinical study to validate the effect of veneer: framework thickness ratio on stress distribution in an implant-supported all-ceramic fixed partial denture. Two commercially available titanium dental implants with corresponding customized abutments and a patient-retrieved all-ceramic fixed partial denture were scanned using a high-resolution micro-CT scanner. Reconstructed 3D objects, along with a simulated bone surface, were incorporated into a non-manifold assembly and meshed simultaneously using Simpleware software (Synopsys Simpleware ScanIP Version P-2019.09; Mountain View, CA). Three such volume meshes (Model A, Model B, Model C) corresponding to veneer: framework thickness ratios of 3:1, 1:1, and 1:3 respectively were created, and exported to a finite element analysis software (ABAQUS). An axial load of 110 N was applied uniformly on the occlusal surfaces to calculate the static stresses and contour plots were generated in the post-processing module. From the data obtained, we observed optimum stress distribution in Model B. Also, the tensile stresses were concentrated in the posterior connector region of the prosthesis in all three models tested. Within the limitations of this study, we can conclude that equal thickness of veneer and framework layers would aid in better stress distribution.
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...