ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (232)
Collection
  • Articles  (232)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-19
    Description: This article proposes a coupled thermomechanical finite element model tailored to the macroscale simulation of metal additive manufacturing processes such as selective laser melting. A first focus lies on the derivation of a consistent constitutive law on basis of a Voigt-type spatial homogenization procedure across the relevant phases, powder, melt and solid. The proposed constitutive law accounts for the irreversibility of phase change and consistently represents thermally induced residual stresses. In particular, the incorporation of a reference strain term, formulated in rate form, allows to consistently enforce a stress-free configuration for newly solidifying material at melt temperature. Application to elementary test cases demonstrates the validity of the proposed constitutive law and allows for a comparison with analytical and reference solutions. Moreover, these elementary solidification scenarios give detailed insights and foster understanding of basic mechanisms of residual stress generation in melting and solidification problems with localized, moving heat sources. As a second methodological aspect, dual mortar mesh tying strategies are proposed for the coupling of successively applied powder layers. This approach allows for very flexible mesh generation for complex geometries. As compared to collocation-type coupling schemes, e.g., based on hanging nodes, these mortar methods enforce the coupling conditions between non-matching meshes in an $$L^2$$ L 2 -optimal manner. The combination of the proposed constitutive law and mortar mesh tying approach is validated on realistic three-dimensional examples, representing a first step towards part-scale predictions.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-21
    Description: A nonparametric method assessing the error and variability margins in solutions depicted in a separated form using experimental results is illustrated in this work. The method assess the total variability of the solution including the modeling error and the truncation error when experimental results are available. The illustrated method is based on the use of the PGD separated form solutions, enriched by transforming a part of the PGD basis vectors into probabilistic one. The constructed probabilistic vectors are restricted to the physical solution’s Stiefel manifold. The result is a real-time parametric PGD solution enhanced with the solution variability and the confidence intervals.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-04
    Description: The current study aims at simulating the in-cylinder combustion process in a diesel engine and investigating the engine performance and pollutant formation. The combustion simulation is performed on a 3D sector employing appropriate models for various physical and chemical processes contributing in the combustion phenomenon. The overall model includes Transition SST turbulence model, eddy dissipation model for turbulence chemistry interaction, Moss–Brookes model for soot calculation and Zeldovich mechanism for NO production other than the usual transport equations. The numerical solutions are based on the finite volume discretization of the governing partial differential equations. Engine performance has been studied in terms of pressure, temperature and heat release rate while the pollutants formation has been investigated in terms of soot and thermal NO production. The results show that the ignition delay is quite short and that the injection timing may be successfully employed to control the combustion behavior. The simulation results are quite consistent with the expected behavior of the target variables indicating that the CFD analysis can be successfully employed in the diesel engine design. The results validation may be acknowledged in view of the mesh independence test, literature comparison and justification of the models.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-04
    Description: This work proposes a framework for projection-based model order reduction (MOR) of computational models aiming at a mechanical analysis of abdominal aortic aneurysms (AAAs). The underlying full-order model (FOM) is patient-specific, stationary and nonlinear. The quantities of interest are the von Mises stress and the von Mises strain field in the AAA wall, which result from loading the structure to the level of diastolic blood pressure at a fixed, imaged geometry (prestressing stage) and subsequent loading to the level of systolic blood pressure with associated deformation of the structure (deformation stage). Prestressing is performed with the modified updated Lagrangian formulation (MULF) approach. The proposed framework aims at a reduction of the computational cost in a many-query context resulting from model uncertainties in two material and one geometric parameter. We apply projection-based MOR to the MULF prestressing stage, which has not been presented to date. Additionally, we propose a reduced-order basis construction technique combining the concept of subspace angles and greedy maximin distance sampling. To further achieve computational speedup, the reduced-order model (ROM) is equipped with the energy-conserving mesh sampling and weighting hyper reduction method. Accuracy of the ROM is numerically tested in terms of the quantities of interest within given bounds of the parameter domain and performance of the proposed ROM in the many-query context is demonstrated by comparing ROM and FOM statistics built from Monte Carlo sampling for three different patient-specific AAAs.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-04
    Description: The paper deals with approximations of periodic functions that play a significant role in harmonic analysis. The approach revisits the trigonometric polynomials, seen as combinations of functions, and proposes to extend the class of models of the combined functions to a wider class of functions. The key here is to use structured functions, that have low complexity, with suitable functional representation and adapted parametrizations for the approximation. Such representation enables to approximate multivariate functions with few eventually random samples. The new parametrization is determined automatically with a greedy procedure, and a low rank format is used for the approximation associated with each new parametrization. A supervised learning algorithm is used for the approximation of a function of multiple random variables in tree-based tensor format, here the particular Tensor Train format. Adaptive strategies using statistical error estimates are proposed for the selection of the underlying tensor bases and the ranks for the Tensor-Train format. The method is applied for the estimation of the wall pressure for a flow over a cylinder for a range of low to medium Reynolds numbers for which we observe two flow regimes: a laminar flow with periodic vortex shedding and a laminar boundary layer with a turbulent wake (sub-critic regime). The automatic re-parametrization enables here to take into account the specific periodic feature of the pressure.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-27
    Description: In this work we investigate the Brinkman volume penalization technique in the context of a high-order Discontinous Galerkin method to model moving wall boundaries for compressible fluid flow simulations. High-order approximations are especially of interest as they require few degrees of freedom to represent smooth solutions accurately. This reduced memory consumption is attractive on modern computing systems where the memory bandwidth is a limiting factor. Due to their low dissipation and dispersion they are also of particular interest for aeroacoustic problems. However, a major problem for the high-order discretization is the appropriate representation of wall geometries. In this work we look at the Brinkman penalization technique, which addresses this problem and allows the representation of geometries without modifying the computational mesh. The geometry is modelled as an artificial porous medium and embedded in the equations. As the mesh is independent of the geometry with this method, it is not only well suited for high-order discretizations but also for problems where the obstacles are moving. We look into the deployment of this strategy by briefly discussing the Brinkman penalization technique and its application in our solver and investigate its behavior in fundamental one-dimensional setups, such as shock reflection at a moving wall and the formation of a shock in front of a piston. This is followed by the application to setups with two and three dimensions, illustrating the method in the presence of curved surfaces.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-27
    Description: In this study the isogeometric B-Rep mortar-based mapping method for geometry models stemming directly from Computer-Aided Design (CAD) is systematically augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus, the newly proposed methodology is applied to geometries described by their Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational B-Spline (NURBS) discretizations as standard in modern CAD. The proposed isogeometric B-Rep mortar-based mapping method is herein extended for the transformation of fields between a B-Rep model and a low order discrete surface representation of the geometry which typically results when the Finite Volume Method (FVM) or the Finite Element Method (FEM) are employed. This enables the transformation of such fields as tractions and displacements along the FSI interface when Isogeometric B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the fluid discretization. The latter allows for diverse discretization schemes between the structural and the fluid Boundary Value Problem (BVP), taking into consideration the special properties of each BVP separately while the constraints along the FSI interface are satisfied in an iterative manner within partitioned FSI. The proposed methodology can be exploited in FSI problems with an IBRA structural discretization or to FSI problems with a standard FEM structural discretization in the frame of the Exact Coupling Layer (ECL) where the interface fields are smoothed using the underlying B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis functions offer. All new developments are systematically investigated and demonstrated by FSI problems with lightweight structures whereby the underlying geometric parametrizations are directly taken from real-world CAD models, thus extending IBRA into coupled problems of the FSI type.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-15
    Description: This paper presents an effective framework to automatically construct 3D quadrilateral meshes of complicated geometry and arbitrary topology adapted for parametric studies. The input is a triangulation of the solid 3D model’s boundary provided from B-Rep CAD models or scanned geometry. The triangulated mesh is decomposed into a set of cuboids in two steps: pants decomposition and cuboid decomposition. This workflow includes an integration of a geometry-feature-aware pants-to-cuboids decomposition algorithm. This set of cuboids perfectly replicates the input surface topology. Using aligned global parameterization, patches are re-positioned on the surface in a way to achieve low overall distortion, and alignment to principal curvature directions and sharp features. Based on the cuboid decomposition and global parameterization, a 3D quadrilateral mesh is extracted. For different parametric instances with the same topology but different geometries, the MEG-IsoQuad method allows to have the same representation: isotopological meshes holding the same connectivity where each point on a mesh has an analogous one into all other meshes. Faithful 3D numerical charts of parametric geometries are then built using standard data-based techniques. Geometries are then evaluated in real-time. The efficiency and the robustness of the proposed approach are illustrated through a few parametric examples.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-27
    Description: Simulators for virtual surgery training need to perform complex calculations very quickly to provide realistic haptic and visual interactions with a user. The complexity is further increased by the addition of cuts to virtual organs, such as would be needed for performing tumor resection. A common method for achieving large performance improvements is to make use of the graphics hardware (GPU) available on most general-use computers. Programming GPUs requires data structures that are more rigid than on conventional processors (CPU), making that data more difficult to update. We propose a new method for structuring graph data, which is commonly used for physically based simulation of soft tissue during surgery, and deformable objects in general. Our method aligns all nodes of the graph in memory, independently from the number of edges they contain, allowing for local modifications that do not affect the rest of the structure. Our method also groups memory transfers so as to avoid updating the entire graph every time a small cut is introduced in a simulated organ. We implemented our data structure as part of a simulator based on a meshless method. Our tests show that the new GPU implementation, making use of the new graph structure, achieves a 10 times improvement in computation times compared to the previous CPU implementation. The grouping of data transfers into batches allows for a 80–90% reduction in the amount of data transferred for each graph update, but accounts only for a small improvement in performance. The data structure itself is simple to implement and allows simulating increasingly complex models that can be cut at interactive rates.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-26
    Description: The main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...