ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (588)
Collection
  • Articles  (588)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-28
    Description: The Sulawesi earthquake with a moment magnitude of Mw 7.5 struck the Central Sulawesi region of the Sulawesi Island, Indonesia, on September 28, 2018. The epicenter of the earthquake was located in the mountainous region of Donggala Regency, in the neck of the Minahasa Peninsula in the Central Sulawesi Province of Indonesia. Although the epicenter was located in Donggala Regency, the greatest devastating effects were observed about 70 km south of the epicenter in the Palu Valley. The event was the first of its kind to cause large-scale flowslides simultaneously at four key locations such as Balaroa, Petobo, Jono Oge, and Sibalaya with extensive ground displacements ranging from several hundred meters to more than 1 km. This article reviews the field observations of geotechnical failures and infrastructure damage caused by liquefaction resulting from the shallow strike-slip earthquake at Palu City, Donggala Regency, and Sigi Regency. A geo-spatial analysis was performed on data collected from aerial drone imagery, along with portable dynamic cone penetration testing (PDCPT) in the field. The investigation revealed a highly stratified ground with alternating soil layers of varying permeability and very low bearing resistance at shallow depths. The investigation also helped in assessing the extent of damage caused by geotechnical failure to the residential infrastructures, irrigation structures, and roads. Graphical Abstract
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-18
    Description: Hypervelocity impacts are among the fundamental phenomena occurring during the evolution of the solar system and are characterized by instantaneous ultrahigh pressure and temperature. Varied physicochemical changes have occurred in the building blocks of celestial bodies under such extreme conditions. The constituent material has transformed into a denser form, a high-pressure polymorph. The high-pressure polymorph is also thought to be the constituent of the deep Earth’s interior. Hence, experiments using a high-pressure and temperature generating apparatus have been conducted to clarify its crystal structure, pressure–temperature stability range, and transformation mechanisms. A natural high-pressure polymorph (mineral) is found from terrestrial and extraterrestrial rocks that experienced a hypervelocity impact. Mineralogists and planetary scientists have investigated high-pressure minerals in meteorites and rocks near terrestrial craters over a half-century. Here, we report brief reviews about the experiments producing high-pressure polymorphs and then summarize the research histories of high-pressure minerals occurring in shocked meteorites and rocks near terrestrial craters. Finally, some implications of high-pressure minerals found in impact-induced shocked rocks are also mentioned. Graphic abstract
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-10
    Description: We developed a snowdrift model to evaluate the snowdrift height around snow fences, which are often installed along roads in snowy, windy locations. The model consisted of the conventional computational fluid dynamics solver that used the lattice Boltzmann method and a module for calculating the snow particles’ motion and accumulation. The calculation domain was a half channel with a flat free-slip boundary on the top and a non-slip boundary on the bottom, and an inflow with artificially generated turbulence from one side to the outlet side was imposed. In addition to the reference experiment with no fence, experiments were set up with a two-dimensional and a three-dimensional fence normal to the dominant wind direction in the channel center. The estimated wind flow over the two-dimensional fence was characterized by a swirling eddy in the cross section, whereas the wind flow in the three-dimensional fence experiment was horizontally diffluent with a dipole vortex pair on the leeward side of the fence. Almost all the snowdrift formed on the windward side of the two-dimensional and three-dimensional fences, although the snowdrift also formed along the split streaks on the leeward side of the three-dimensional fence. Our results suggested that the fence should be as long as possible to avoid snowdrifts on roads.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-26
    Description: Abstract Atmospheric local-to-regional dispersion models are widely used on Earth to predict and study the effects of chemical species emitted into the atmosphere and to contextualize sparse data acquired at particular locations and/or times. However, to date, no local-to-regional dispersion models for Mars have been developed; only mesoscale/microscale meteorological models have some dispersion and chemical capabilities, but they do not offer the versatility of a dedicated atmospheric dispersion model when studying the dispersion of chemical species in the atmosphere, as it is performed on Earth. Here, a new three-dimensional local-to-regional-scale Eulerian atmospheric dispersion model for Mars (DISVERMAR) that can simulate emissions to the Martian atmosphere from particular locations or regions including chemical loss and predefined deposition rates, is presented. The model can deal with topography and non-uniform grids. As a case study, the model is applied to the simulation of methane spikes as detected by NASA’s Mars Science Laboratory (MSL); this choice is made given the strong interest in and controversy regarding the detection and variability of this chemical species on Mars.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-14
    Description: This study examined the regional performance of a data assimilation (DA) system that couples the particle filter and the Spatially Explicit Individual-based Dynamic Global Vegetation Model (SEIB-DGVM). This DA system optimizes model parameters of defoliation and photosynthetic rate, which are sensitive to phenology in the SEIB-DGVM, by assimilating satellite-observed leaf area index (LAI). The experiments without DA overestimated LAIs over Siberia relative to the satellite-observed LAI, whereas the DA system successfully reduced the error. DA provided improved analyses for the LAI and other model variables consistently, with better match with satellite observed LAI and with previous studies for spatial distributions of the estimated overstory LAI, gross primary production (GPP), and aboveground biomass. However, three main issues still exist: (1) the estimated start date of defoliation for overstory was about 40 days earlier than the in situ observation, (2) the estimated LAI for understory was about half of the in situ observation, and (3) the estimated overstory LAI and the total GPP were overestimated compared to the previous studies. Further DA and modeling studies are needed to address these issues.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-13
    Description: Abstract Zirconolite is a common Zr-rich accessary mineral in mafic rocks. It is also an ideal U–Pb/Pb–Pb chronometer because it commonly contains high U content (mostly 0.1–10 wt%) and negligible initial Pb. However, zirconolite is usually very small (e.g., ~ 1 μm in width) in lunar rocks, requiring a high spatial resolution analysis. We analyzed a single, large (25 μm × 20 μm) grain of zirconolite in lunar meteorite NWA 4485 using Pb–Pb dating by NanoSIMS and U–Th–Pb dating by EPMA. The resultant U–Th–Pb age is 4540 ± 340 Ma (2σ) with a spatial resolution of 1.3 μm. The Pb–Pb age by NanoSIMS is 4348.5 ± 4.8 Ma (2σ) with a spatial resolution of ~ 2 μm, consistent with the age of 4352 ± 10 Ma and 4344 ± 14 Ma reported in the same meteorite and its paired meteorite NWA 4472. Although U–Th–Pb age is somewhat older, it still includes the NanoSIMS results within the analytical uncertainty. This work demonstrates the potential application of the combined EPMA dating and REE analysis of lunar zirconolite, with the benefits of high spatial resolution, non-destructive, and readily accessibility of the instrument. The precision of the EPMA dating (7.6%, 2σ) can be improved by increasing the counting time for Pb, U and Th. We expect to apply this EPMA technique for a quick and non-destructive age survey and geochemical study of zirconolite grains from the lunar mare basalts newly returned by Chang’E-5 mission which landed on a very young (1.2–2.0 Ga by crater-counting chronology) basalt unit in Procellarum KREEP Terrain.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-03
    Description: The Global Boundary Stratotype Section and Point (GSSP) defining the base of the Chibanian Stage and Middle Pleistocene Subseries at the Chiba section, Japan, was ratified on January 17, 2020. Although this completed a process initiated by the International Union for Quaternary Research in 1973, the term Middle Pleistocene had been in use since the 1860s. The Chiba GSSP occurs immediately below the top of Marine Isotope Substage (MIS) 19c and has an astronomical age of 774.1 ka. The Matuyama–Brunhes paleomagnetic reversal has a directional midpoint just 1.1 m above the GSSP and serves as the primary guide to the boundary. This reversal lies within the Early–Middle Pleistocene transition and has long been favoured to mark the base of the Middle Pleistocene. MIS 19 occurs within an interval of low-amplitude orbital eccentricity and was triggered by an obliquity cycle. It spans two insolation peaks resulting from precession minima and has a duration of ~ 28 to 33 kyr. MIS 19c begins ~ 791–787.5 ka, includes full interglacial conditions which lasted for ~ 8–12.5 kyr, and ends with glacial inception at ~ 774–777 ka. This inception has left an array of climatostratigraphic signals close to the Early–Middle Pleistocene boundary. MIS 19b–a contains a series of three or four interstadials often with rectangular-shaped waveforms and marked by abrupt (
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-01
    Description: The Siwalik Group, ranging from the Early Miocene to Pleistocene, is believed to be deposited in the fluvial environment and controlled by contemporary Himalayan tectonics and climate. In this study, we established the fluvial environment and its controlling factors responsible for the deposition of the Siwalik succession along the Muksar Khola section in the eastern Nepal Himalaya. Five sedimentary facies associations are identified; these are interpreted as the deposits of flood plain-dominated fine-grained meandering river (FA1), flood-dominated overbank environment (FA2), sandy meandering river (FA3), anastomosing river (FA4), and debris flow-dominated gravelly braided river (FA5). These changes in the fluvial system occurred around 10.5 Ma, 10.0 Ma, 5.9 Ma and 3.5 Ma, defined by existing magnetostratigraphy constraints, due to the effects of hinterland tectonics, climate and sea-level change and continuous drifting of the foreland basin towards the hinterland concerning depositional age. The thick succession of an intraformational conglomerate reveals intensification of the monsoon started around 10.5 Ma in the eastern Nepal Himalaya. The present study also shows asynchronous exhumation of the Himalaya from east to west brought a significant difference in the fluvial environment of the Neogene foreland basin.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-01
    Description: A dinoflagellate cyst record from the highly resolved Chiba composite section in Japan has been used to reconstruct sea-surface paleoceanographic changes across the Lower–Middle Pleistocene Subseries (Calabrian–Chibanian Stage) boundary at the global stratotype, constituting the first detailed study of this microfossil group from the Pleistocene of the Japanese Pacific margin. Cold, subarctic water masses from 794.2 ka gave way to warming and rapid retreat of the Subpolar Front at 789.3 ka, ~ 2000 years before the end of Marine Isotope Stage (MIS) 20. Throughout the fully interglacial conditions of MIS 19c, assemblages are consistent with warm sea surface temperatures but also reveal instability and latitudinal shifts in the Kuroshio Extension system. The abrupt dominance of Protoceratium reticulatum cysts between 772.9 and 770.4 ka (MIS 19b) registers the influence of cooler, mixed, nutrient-rich waters of the Kuroshio–Oyashio Interfrontal Zone resulting from a southward shift of the Kuroshio Extension. Its onset at 772.9 ka serves as a local ecostratigraphic marker for the Chibanian Stage Global Boundary Stratotype Section and Point (GSSP) which occurs just 1.15 m (= 1300 years) below it. An interval from 770.1 ka to the top of the examined succession at 765.8 ka (MIS 19a) represents warm, presumably stratified but still nutrient-elevated surface waters, indicating a northward shift of the Kuroshio Extension ~ 5 kyrs after the termination of full interglacial conditions on land.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-16
    Description: The global activities of typhoons and hurricanes are gradually changing, and these storms can drastically affect lake ecosystems through the recession of submerged macrophytes that regulate the water quality in lakes. Using an echosounder, we captured the short-term, massive loss of submerged macrophytes attributed to the abnormal fluctuation of the water level induced by the approach of a catastrophic super typhoon in the southern basin of Lake Biwa, Japan. This paper investigates the physical processes responsible for the loss of vegetation using a high-resolution circulation model in Lake Biwa as a pilot study area. The circulation model was coupled with dynamical models of the fluid force and erosion acting on the vegetation. Our simulation successfully reproduced the water level fluctuation and high-speed current (torrent) generated by the typhoon gale. The simulated results demonstrated that the fluid force driven by the gale-induced torrent uprooted submerged macrophytes during the typhoon approach and that this fluid force (rather than erosion) caused the outflow of vegetation. As a result, this uprooting attributed to the fluid force induced the massive loss of submerged macrophytes in a large area of the southern basin, which might have increased primary production and reduced the stock of fish such as bluegill in the lake. Our model can estimate the reduction in the macrophyte height within the range of − 1.3 to − 0.4 m, suggesting that fluid forces greater than the time-averaged value (1.24 × 10−4 N) were available. Flow speeds of approximately 0.8 m/s might be the critical value that induces the fluid force acting on the uprooting of the submerged macrophytes. Our approach is practical for evaluating changes in lake environments attributed to the massive outflow of submerged macrophytes under various climate change scenarios.
    Electronic ISSN: 2197-4284
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...