ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (476)
Collection
  • Articles  (476)
Years
Journal
  • 1
    Publication Date: 2021-10-26
    Description: In this paper, we present a mixed-initiative motion control strategy for multiple quadrotor aerial vehicles. The proposed approach incorporates formation specifications and motion-planning commands as well as inputs by a human operator. More specifically, we consider a leader–follower aerial robotic system, which autonomously attains a specific geometrical formation, by regulating the distances among neighboring agents while avoiding inter-robot collisions. The desired formation is realized by a decentralized prescribed performance control strategy, resulting in a low computational complexity implementation with guaranteed robustness and accurate formation establishment. The multi-robot system is safely guided towards goal configurations, by employing a properly defined navigation function that provides appropriate motion commands to the leading vehicle, which is the only one that has knowledge of the workspace and the goal configurations. Additionally, the overall framework incorporates human commands that dictate the motion of the leader via a teleoperation interface. The resulting mixed-initiative control system has analytically guaranteed stability and convergence properties. A realistic simulation study, considering a team of five quadrotors operating in a cluttered environment, was carried out to demonstrate the performance of the proposed strategy.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-16
    Description: This paper presents the design, modeling, analysis, and experimental results of a novel bipedal robotic system that utilizes two interconnected single degree-of-freedom (DOF) leg mechanisms to produce stable forward locomotion and steering. The single DOF leg is actuated via a Reuleaux triangle cam-follower mechanism to produce a constant body height foot trajectory. Kinematic analysis and dimension selection of the Reuleaux triangle mechanism is conducted first to generate the desired step height and step length. Leg sequencing is then designed to allow the robot to maintain a constant body height and forward walking velocity. Dynamic simulations and experiments are conducted to evaluate the walking and steering performance. The results show that the robot is able to control its body orientation, maintain a constant body height, and achieve quasi-static locomotion stability.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-16
    Description: This paper presents an inverse kinematic controller using neural networks for trajectory controlling of a delta robot in real-time. The developed control scheme is purely data-driven and does not require prior knowledge of the delta robot kinematics. Moreover, it can adapt to the changes in the kinematics of the robot. For developing the controller, the kinematic model of the delta robot is estimated by using neural networks. Then, the trained neural networks are configured as a controller in the system. The parameters of the neural networks are updated while the robot follows a path to adaptively compensate for modeling uncertainties and external disturbances of the control system. One of the main contributions of this paper is to show that updating the parameters of neural networks offers a smaller tracking error in inverse kinematic control of a delta robot with consideration of joint backlash. Different simulations and experiments are conducted to verify the proposed controller. The results show that in the presence of external disturbance, the error in trajectory tracking is bounded, and the negative effect of joint backlash in trajectory tracking is reduced. The developed method provides a new approach to the inverse kinematic control of a delta robot.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-15
    Description: Catching flying objects is a challenging task in human–robot interaction. Traditional techniques predict the intersection position and time using the information obtained during the free-flying ball motion. A common pain point in these systems is the short ball flight time and uncertainties in the ball’s trajectory estimation. In this paper, we present the Robot Anticipation Learning System (RALS) that accounts for the information obtained from observation of the thrower’s hand motion before the ball is released. RALS takes extra time for the robot to start moving in the direction of the target before the opponent finishes throwing. To the best of our knowledge, this is the first robot control system for ball-catching with anticipation skills. Our results show that the information fused from both throwing and flying motions improves the ball-catching rate by up to 20% compared to the baseline approach, with the predictions relying only on the information acquired during the flight phase.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-26
    Description: Grocery shoppers must negotiate cluttered, crowded, and complex store layouts containing a vast variety of products to make their intended purchases. This complexity may prevent even experienced shoppers from finding their grocery items, consuming a lot of their time and resulting in monetary loss for the store. To address these issues, we present a generic grocery robot architecture for the autonomous search and localization of products in crowded dynamic unknown grocery store environments using a unique context Simultaneous Localization and Mapping (contextSLAM) method. The contextSLAM method uniquely creates contextually rich maps through the online fusion of optical character recognition and occupancy grid information to locate products and aid in robot localization in an environment. The novelty of our robot architecture is in its ability to intelligently use geometric and contextual information within the context map to direct robot exploration in order to localize products in unknown environments in the presence of dynamic people. Extensive experiments were conducted with a mobile robot to validate the overall architecture and contextSLAM, including in a real grocery store. The results of the experiments showed that our architecture was capable of searching for and localizing all products in various grocery lists in different unknown environments.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-16
    Description: Maintenance and inspection systems for future fusion power plants (e.g., STEP and DEMO) are expected to require the integration of hundreds of systems from multiple suppliers, with lifetime expectancies of several decades, where requirements evolve over time and obsolescence management is required. There are significant challenges associated with the integration, deployment, and maintenance of very large-scale robotic systems incorporating devices from multiple suppliers, where each may utilise bespoke, non-standardised control systems and interfaces. Additionally, the unstructured, experimental, or unknown operational conditions frequently result in new or changing system requirements, meaning extension and adaptation are necessary. Whilst existing control frameworks (e.g., ROS, OPC-UA) allow for the robust integration of complex robotic systems, they are not compatible with highly efficient maintenance and extension in the face of changing requirements and obsolescence issues over decades-long periods. We present the CorteX software framework as well as results showing its effectiveness in addressing the above issues, whilst being demonstrated through hardware that is representative of real-world fusion applications.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-14
    Description: In this paper, we present a novel concept and primary investigations regarding automated unfastening of hexagonal nuts by means of surface exploration with a compliant robot. In contrast to the conventional industrial approaches that rely on custom-designed motorised tools and mechanical tool changers, we propose to use robot fingers to position, grasp and unfasten unknown random-sized hexagonal nuts, which are arbitrarily positioned in the robot’s task space. Inspired by how visually impaired people handle unknown objects, in this work, we use information observed from surface exploration to devise the unfastening strategy. It combines torque monitoring with active compliance for the robot fingers to smoothly explore the object’s surface. We implement a shape estimation technique combining scaled iterative closest point and hypotrochoid approximation to estimate the location as well as contour profile of the hexagonal nut so as to accurately position the gripper fingers. We demonstrate this work in the context of dismantling an electrically driven vehicle battery pack. The experiments are conducted using a seven degrees of freedom (DoF)–compliant robot fitted with a two-finger gripper to unfasten four different sized randomly positioned hexagonal nuts. The obtained results suggest an overall exploration and unfastening success rate of 95% over an average of ten trials for each nut.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-13
    Description: The COVID-19 pandemic has critically impacted the health and safety of the population of the world, especially the health and well-being of older adults. Socially assistive robots (SARs) have been used to help to mitigate the effects of the pandemic including loneliness and isolation, and to alleviate the workload of both formal and informal caregivers. This paper presents the first extensive survey and discussion on just how socially assistive robots have specifically helped this population, as well as the overall impact on health and the acceptance of such robots during the pandemic. The goal of this review is to answer research questions with respect to which SARs were used during the pandemic and what specific tasks they were used for, and what the enablers and barriers were to the implementation of SARs during the pandemic. We will also discuss lessons learned from their use to inform future SAR design and applications, and increase their usefulness and adoption in a post-pandemic world. More research is still needed to investigate and appreciate the user experience of older adults with SARs during the pandemic, and we aim to provide a roadmap for researchers and stakeholders.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-13
    Description: The field of robotics has been rapidly developing in recent years, and the work related to training robotic agents with reinforcement learning has been a major focus of research. This survey reviews the application of reinforcement learning for pick-and-place operations, a task that a logistics robot can be trained to complete without support from a robotics engineer. To introduce this topic, we first review the fundamentals of reinforcement learning and various methods of policy optimization, such as value iteration and policy search. Next, factors which have an impact on the pick-and-place task, such as reward shaping, imitation learning, pose estimation, and simulation environment are examined. Following the review of the fundamentals and key factors for reinforcement learning, we present an extensive review of all methods implemented by researchers in the field to date. The strengths and weaknesses of each method from literature are discussed, and details about the contribution of each manuscript to the field are reviewed. The concluding critical discussion of the available literature, and the summary of open problems indicates that experiment validation, model generalization, and grasp pose selection are topics that require additional research.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-30
    Description: The ability of an autonomous robot to adapt to different terrain affords the flexibility to move successfully in a range of environments. This paper proposes the Cylindabot, a transformable Wheg robot that can move with two large wheels, each of which can rotate out, producing three legs. This ability to change its mode of locomotion allows for specialised performance. The Cylindabot has been tested in simulation and on a physical robot on steps and slopes as an indication of its efficacy in different environments. These experiments show that such robots are capable of climbing up to a 32 degree slope and a step 1.43 times their initial height. Theoretical limits are devised that match the results, and a comparison with existing Wheg platforms is made.
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...