ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,201)
Collection
  • Articles  (6,201)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-11-01
    Description: This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-01
    Description: The observing system design of multidisciplinary field measurements involves a variety of considerations on logistics, safety, and science objectives. Typically, this is done based on investigator intuition and designs of prior field measurements. However, there is potential for considerable increases in efficiency, safety, and scientific success by integrating numerical simulations in the design process. Here, we present a novel numerical simulation–environmental response function (NS–ERF) approach to observing system simulation experiments that aids surface–atmosphere synthesis at the interface of mesoscale and microscale meteorology. In a case study we demonstrate application of the NS–ERF approach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered the placement of 20 eddy covariance flux towers, operations for 72 h of low-altitude flux aircraft measurements, and integration of various remote sensing data products. A 2 h high-resolution large eddy simulation created a cloud-free virtual atmosphere for surface and meteorological conditions characteristic of the field campaign domain and period. To explore two specific design hypotheses we super-sampled this virtual atmosphere as observed by 13 different yet simultaneous observing system designs consisting of virtual ground, airborne, and satellite observations. We then analyzed these virtual observations through ERFs to yield an optimal aircraft flight strategy for augmenting a stratified random flux tower network in combination with satellite retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19's potential to explore energy balance closure and spatial patterning science objectives while substantially simplifying logistics. Owing to its modular extensibility, NS–ERF lends itself to optimizing observing system designs also for natural climate solutions, emission inventory validation, urban air quality, industry leak detection, and multi-species applications, among other use cases.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-27
    Description: Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by aerosol mass spectrometers. However, source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several heating stoves have been compared using an aerosol chemical speciation monitor (ACSM). The same samples of biomass briquettes and smokeless coal were burnt in a conventional stove and Ecodesign stove (Ecodesign refers to a stove conforming to EU Directive 2009/125/EC), while different batches of wood, peat, and smoky coal were also burnt in the conventional stove, and the OA mass spectra were compared to those previously obtained using a boiler stove. The results show that although certain ions (e.g., m/z 60) remain important markers for solid-fuel burning, the peak intensities obtained at specific m/z values in the normalized mass spectra were not constant with variations ranging from  100 %. Using the OA mass spectra of peat, wood, and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits (the limits approach) in the positive matrix factorization (PMF) analysis with the Multilinear Engine algorithm (ME-2), the respective contributions of these fuels to ambient submicron aerosols during a winter period in Dublin, Ireland, were evaluated and compared with the conventional a-value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2 %–7 %, while relatively large uncertainties (8 %–29 %) were found for the a-value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs. 41 %) and wood (14 % vs. 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses compared to electricity and gas. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burnt in different stoves in real-world applications.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-26
    Description: Spectroscopy of scattered sunlight in the near-UV to near-IR spectral ranges has proven to be an extremely useful tool for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity and spatial resolution of spectroscopic instruments is the étendue (product of aperture angle and entrance area) of the spectrograph, which is at the heart of the instrument. The étendue of an instrument can be enhanced by (1) upscaling all instrument dimensions or (2) by changing the instrument F number, (3) by increasing the entrance area, or (4) by operating many instruments (of identical design) in parallel. The étendue can be enhanced by (in principle) arbitrary factors by options (1) and (4); the effect of options (2) and (3) is limited. We present some new ideas and considerations of how instruments for the spectroscopic determination of atmospheric gases could be optimized using new possibilities in spectrograph design and manufacturing. Particular emphasis is on arrays of massively parallel instruments for observations using scattered sunlight. Such arrays can reduce size and weight of instruments by orders of magnitude while preserving spectral resolution and light throughput. We also discuss the optimal size of individual spectrographs in a spectrograph array and give examples of spectrograph systems for use on a (low Earth orbit) satellite, including one with sub-kilometre ground pixel size.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-26
    Description: Ice and mixed-phase clouds play a key role in our climate system because of their strong controls on global precipitation and radiation budget. Their microphysical properties have been characterized commonly by polarimetric radar measurements. However, there remains a lack of robust estimates of microphysical properties of concurrent pristine ice and aggregates because larger snow aggregates often dominate the radar signal and mask contributions of smaller pristine ice crystals. This paper presents a new method that separates the scattering signals of pristine ice embedded in snow aggregates in scanning polarimetric radar observations and retrieves their respective abundances and sizes for the first time. This method, dubbed ENCORE-ice, is built on an iterative stochastic ensemble retrieval framework. It provides the number concentration, ice water content, and effective mean diameter of pristine ice and snow aggregates with uncertainty estimates. Evaluations against synthetic observations show that the overall retrieval biases in the combined total microphysical properties are within 5 % and that the errors with respect to the truth are well within the retrieval uncertainty. The partitioning between pristine ice and snow aggregates also agrees well with the truth. Additional evaluations against in situ cloud probe measurements from a recent campaign for a stratiform cloud system are promising. Our median retrievals have a bias of 98 % in the total ice number concentration and 44 % in the total ice water content. This performance is generally better than the retrieval from empirical relationships. The ability to separate signals of different ice species and to provide their quantitative microphysical properties will open up many research opportunities, such as secondary ice production studies and model evaluations for ice microphysical processes.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-25
    Description: This paper presents a method named 3D-GAN, based on a generative adversarial network (GAN), to retrieve the total mass, 3D structure and the internal mass distribution of snowflakes. The method uses as input a triplet of binary silhouettes of particles, corresponding to the triplet of stereoscopic images of snowflakes in free fall captured by a multi-angle snowflake camera (MASC). The 3D-GAN method is trained on simulated snowflakes of known characteristics whose silhouettes are statistically similar to real MASC observations, and it is evaluated by means of snowflake replicas printed in 3D at 1:1 scale. The estimation of mass obtained by 3D-GAN has a normalized RMSE (NRMSE) of 40 %, a mean normalized bias (MNB) of 8 % and largely outperforms standard relationships based on maximum size and compactness. The volume of the convex hull of the particles is retrieved with NRMSE of 35 % and MNB of +19 %. In order to illustrate the potential of 3D-GAN to study snowfall microphysics and highlight its complementarity with existing retrieval algorithms, some application examples and ideas are provided, using as showcases the large available datasets of MASC images collected worldwide during various field campaigns. The combination of mass estimates (from 3D-GAN) and hydrometeor classification or riming degree estimation (from independent methods) allows, for example, to obtain mass-to-size power law parameters stratified on hydrometeor type or riming degree. The parameters obtained in this way are consistent with previous findings, with exponents overall around 2 and increasing with the degree of riming.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-25
    Description: Chemical ionization mass spectrometry (CIMS) using iodide as a reagent ion has been widely used to classify organic compounds in the atmosphere by their elemental formula. Unfortunately, calibration of these instruments is challenging due to a lack of commercially available standards for many compounds, which has led to the development of methods for estimating CIMS sensitivity. By coupling a thermal desorption aerosol gas chromatograph (TAG) simultaneously to a flame ionization detector (FID) and an iodide CIMS, we use the individual particle-phase analytes, quantified by the FID, to examine the sensitivity of the CIMS and its variability between isomers of the same elemental formula. Iodide CIMS sensitivities of isomers within a formula are found to generally vary by 1 order of magnitude with a maximum deviation of 2 orders of magnitude. Furthermore, we compare directly measured sensitivity to a method of estimating sensitivity based on declustering voltage (i.e., “voltage scanning”). This approach is found to carry high uncertainties for individual analytes (0.5 to 1 order of magnitude) but represents a central tendency that can be used to estimate the sum of analytes with reasonable error (∼30 % differences between predicted and measured moles). Finally, gas chromatography (GC) retention time, which is associated with vapor pressure and chemical functionality of an analyte, is found to qualitatively correlate with iodide CIMS sensitivity, but the relationship is not close enough to be quantitatively useful and could be explored further in the future as a potential calibration approach.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-22
    Description: We analysed 286 nights of data from the OH* airglow imager FAIM 3 (Fast Airglow IMager) acquired at Otlica Observatory (45.93∘ N, 13.91∘ E), Slovenia, between 26 October 2017 and 6 June 2019. Measurements have been performed with a spatial resolution of 24 m per pixel and a temporal resolution of 2.8 s. A two-dimensional fast Fourier transform is applied to the image data to derive horizontal wavelengths between 48 m and 4.5 km in the upper mesosphere/lower thermosphere (UMLT) region. In contrast to the statistics of larger-scale gravity waves (horizontal wavelength up to ca. 50 km; Hannawald et al., 2019), we find a more isotropic distribution of directions of propagation, pointing to the presence of wave structures created above the stratospheric wind fields. A weak seasonal tendency of a majority of waves propagating eastward during winter may be due to instability features from breaking secondary gravity waves that were created in the stratosphere. We also observe an increased southward propagation during summer, which we interpret as an enhanced contribution of secondary gravity waves created as a consequence of primary wave filtering by the meridional mesospheric circulation. We present multiple observations of turbulence episodes captured by our high-resolution airglow imager and estimated the energy dissipation rate in the UMLT from image sequences in 25 cases. Values range around 0.08 and 9.03 W kg−1 and are on average higher than those in recent literature. The values found here would lead to an approximated localized maximum heating of 0.03–3.02 K per turbulence event. These are in the same range as the daily chemical heating rates for the entire atmosphere reported by Marsh (2011), which apparently stresses the importance of dynamical energy conversion in the UMLT.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-18
    Description: In this study, image data features and machine learning methods were used to calculate 24 h continuous cloud cover from image data obtained by a camera-based imager on the ground. The image data features were the time (Julian day and hour), solar zenith angle, and statistical characteristics of the red–blue ratio, blue–red difference, and luminance. These features were determined from the red, green, and blue brightness of images subjected to a pre-processing process involving masking removal and distortion correction. The collected image data were divided into training, validation, and test sets and were used to optimize and evaluate the accuracy of each machine learning method. The cloud cover calculated by each machine learning method was verified with human-eye observation data from a manned observatory. Supervised machine learning models suitable for nowcasting, namely, support vector regression, random forest, gradient boosting machine, k-nearest neighbor, artificial neural network, and multiple linear regression methods, were employed and their results were compared. The best learning results were obtained by the support vector regression model, which had an accuracy, recall, and precision of 0.94, 0.70, and 0.76, respectively. Further, bias, root mean square error, and correlation coefficient values of 0.04 tenths, 1.45 tenths, and 0.93, respectively, were obtained for the cloud cover calculated using the test set. When the difference between the calculated and observed cloud cover was allowed to range between 0, 1, and 2 tenths, high agreements of approximately 42 %, 79 %, and 91 %, respectively, were obtained. The proposed system involving a ground-based imager and machine learning methods is expected to be suitable for application as an automated system to replace human-eye observations.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-15
    Description: Light-absorbing organic matter, known as brown carbon (BrC), has previously been found to significantly enhance the absorption of solar radiation by biomass burning (BB) aerosol. Previous studies have also proposed methods aimed at constraining the BrC contribution to the overall aerosol absorption using the absorption Ångström exponents (AAEs) derived from the multi-wavelength remote observations at Aerosol Robotic Network (AERONET). However, representations of the BrC absorption in atmospheric models remain uncertain, particularly due to the high variability in the absorption properties of BB organic aerosol (OA). As a result, there is a need for stronger observational constraints on these properties. We extend the concept of the established AAE-based methods in the framework of our Bayesian method, which combines remote optical observations with Monte Carlo simulations of the aerosol absorption properties. We propose that the observational constraints on the absorption properties of BB OA can be enhanced by using the single-scattering albedo (SSA) as part of the observation vector. The capabilities of our method were first examined by using synthetic data, which were intended to represent the absorption properties of BB aerosol originating from wildfires in Siberia. We found that observations of AAEs and SSA can provide efficient constraints not only on the BrC contribution to the total absorption but also on both the imaginary part of the refractive index and the mass absorption efficiency of OA. The subsequent application of our method to the original multi-annual data from Siberian AERONET sites, along with the supplementary analysis of possible biases in the a posteriori estimates of the inferred absorption properties, indicates that the contribution of BrC to the overall light absorption by BB aerosol in Siberia at the 440 nm wavelength is most likely to range, on average, from about 15 % to 21 %, although it is highly variable and, in some cases, can exceed 40 %. Based on the analysis of the AERONET data, we also derived simple nonlinear parameterizations for the absorption characteristics of BB OA in Siberia as functions of the AAE.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...