ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,085)
Collection
  • Articles  (5,085)
Publisher
Years
Journal
  • 1
    Publication Date: 2021-10-29
    Description: Light and water availability are likely to vary over the lifespan of closed-canopy forest trees with understory trees experiencing greater limitations to growth by light and canopy trees greater limitation due to drought. As drought and shade have opposing effects on isotope discrimination (Δ13C), paired measurement of ring width and Δ13C can potentially be used to differentiate between water and light limitations on tree growth. We tested this approach for Cedrela trees from three tropical forests in Bolivia and Mexico that differ in rainfall and canopy structure. Using lifetime ring width and Δ13C data for trees of up to and over 200 years old, we assessed how controls on tree growth changed from understory to the canopy. Growth and Δ13C are mostly anti-correlated in the understory but this anti-correlation disappeared or weakened when trees reached the canopy, especially at the wettest site. This indicates that understory growth variation is controlled by photosynthetic carbon assimilation (A) due to variation in light levels. Once trees reached the canopy, inter-annual variation in growth and Δ13C at one of the dry sites showed positive correlations, indicating inter-annual variation in growth is driven by variation in water stress affecting stomatal conductance (gs). Paired analysis of ring widths and carbon isotopes provides significant insight to discerning between environmental factors controlling growth over trees’ life; strong light limitations for understory trees in closed-canopy moist forests switched to drought stress for (sub)canopy trees in dry forests. We show that combined isotope and ring width measurements can significantly improve our insights in tree functioning and be used to disentangle limitations due to shade from those due to drought.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism with water potential corresponding to 50% loss hydraulic conductivity ranged from −2.31 to −2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P  0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity was more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-07
    Description: Considering the temporal responses of carbon isotope discrimination (Δ13C) to local water availability in the spatial analysis of Δ13C is essential for evaluating the contribution of environmental and genetic facets of plant Δ13C. Using tree-ring Δ13C from years with contrasting water availability at 76 locations across the natural range of loblolly pine, we decomposed site-level Δ13C signals to maximum Δ13C in well-watered conditions (Δ13Cmax) and isotopic drought sensitivity (m) as a change in Δ13C per unit change of Palmer’s Drought Severity Index (PDSI). Site water status, especially the tree lifetime average PDSI, was the primary factor affecting Δ13Cmax. The strong spatial correlation exhibited by m was related to both genetic and environmental factors. The long-term average water availability during the period relevant to trees as indicated by lifetime average PDSI correlated with Δ13Cmax, suggesting acclimation in tree gas-exchange traits, independent of incident water availability. The positive correlation between lifetime average PDSI and m indicated that loblolly pines were more sensitive to drought at mesic than xeric sites. The m was found to relate to a plant’s stomatal control, and may be employed as a genetic indicator of efficient water use strategies. Partitioning Δ13C to Δ13Cmax and m provided a new angle for understanding sources of variation in plant Δ13C, with several fundamental and applied implications.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-28
    Description: Boreal trees are capable of taking up organic nitrogen (N) as effectively as inorganic N. Depending on the abundance of soil N forms, plants may adjust physiological and morphological traits to optimize N uptake. However, the link between these traits and N uptake in response to soil N sources is poorly understood. We examined Pinus sylvestris seedlings’ biomass growth and allocation, transpiration, and N uptake in response to additions of organic (the amino acid arginine) or inorganic N (ammonium-nitrate). We also monitored in-situ soil N fluxes in the pots following an addition of N, using a microdialysis system. Supplying organic N resulted in a stable soil N flux, whereas the inorganic N resulted in a sharp increase of nitrate flux followed by a rapid decline, demonstrating a fluctuating N supply and a risk for loss of nitrate from the growth medium. Seedlings supplied with organic N achieved a greater biomass with a higher N content, thus reaching a higher N recovery compared with those supplied inorganic N. In spite of a higher N concentration in organic N seedlings, root-to-shoot ratio and transpiration per unit leaf area were similar to those of inorganic N seedlings. We conclude that enhanced seedlings’ nutrition and growth under the organic N source may be attributed to a stable supply of N, owing to a strong retention rate in the soil medium.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-20
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-20
    Description: Functional structural plant models of tree crops are useful tools that were introduced more than two decades ago. They can represent the growth and development of a plant through the in silico simulation of the 3D architecture in connection with physiological processes. In tree crops, physiological processes such as photosynthesis, carbon allocation, and growth are usually integrated into these models although other functions such as water and nutrient uptake are often disregarded. The implementation of the 3D architecture involves different techniques such as L-system frameworks, pipe model concepts, and Markovian models to simulate branching processes, bud fates, and elongation of stems based on the production of metamers. The simulation of root architecture is still a challenge for researchers due to a limited amount of information and experimental issues in dealing with roots because root development is not based on the production of metamers. This review aims to focus on functional-structural models of fruit tree crops, highlighting their physiological components. The potential and limits of these tools are reviewed to point out the topics that still need more attention.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-20
    Description: The dependence of trees on carbon and nutrient storage is critical to predicting the forest vulnerability under climate change, but whether evergreen and deciduous species differ in their use and allocation of stored resources during spring phenology is unclear. Using a high temporal resolution, we evaluated the role of spring phenology and shoot growth as determinants of the carbon and nutrient storage dynamics in contrasting leaf habits. We recorded the phenology and shoot elongation and determined the concentrations of total non-structural carbohydrates (NSC), starch, soluble carbohydrates (SC), nitrogen (N) and phosphorus (P) in buds, expanding shoots and previously formed shoots of two sympatric Nothofagus species with contrasting leaf habit. Species reached similar shoot lengths, though shoot expansion started 35 days earlier and lasted c. 40 days more in the deciduous species. Thus, while the deciduous species had a relatively constant shoot growth rate, the evergreen species experienced a conspicuous growth peak for c. 20 days. In the evergreen species, the greatest decreases in NSC concentrations of previously formed shoots and leaves coincided with the maximum shoot expansion rate and fruit filling, with minimums of 63% and 65% relative to values at bud dormancy, respectively. In contrast, minimum NSC concentrations of the previously formed shoots of the deciduous species were only 73% and occurred prior to the initiation of shoot expansion. Bud N and P concentrations increased during budbreak, while previously formed shoots generally did not decrease their nutrient concentrations. Late spring phenology and overlapping of phenophases contributed to the greater dependence on storage of proximal tissues in the studied evergreen compared to deciduous species, suggesting that phenology is a key determinant of the contrasting patterns of storage use in evergreen and deciduous species.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-20
    Description: Plants constitute 80% of the biomass on earth, and almost two thirds of this biomass is found in wood. Wood formation is a carbon demanding process and relies on carbon transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here we review the molecules and mechanisms used to transport and allocate carbon in trees. Sucrose is the major form in which carbon is transported, found in the phloem sap of all so far investigated tree species. However, in several tree species sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Further, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular carbon recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C carrying molecules in trees reveals no consistent differences in carbon transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate related environmental factors will not either explain the diversity of carbon transport forms. However, the consideration of C transport mechanisms in relation to tree—rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-17
    Description: Noncoding RNAs (ncRNAs) play pivotal roles in various biological processes in plants. However, the role of ncRNAs in tapping panel dryness (TPD) of rubber tree (Hevea brasiliensis) is largely unknown. Here, the whole transcriptomes of bark tissues from healthy and TPD trees were performed to identify differentially expressed long ncRNAs (DELs), microRNAs/miRNA (DEMs), genes (DEGs), and their regulatory networks involved in TPD. A total of 263 DELs, 174 DEMs, and 1,574 DEGs were identified in the bark of TPD tree compared with that of healthy tree. KEGG analysis revealed that most of the DEGs and targets of DELs and DEMs were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Additionally, the majority of DEGs and DELs related to rubber biosynthesis were down-regulated in TPD trees. Furthermore, 98 DEGs and 44 DELs were targeted by 54 DEMs, 190 DEGs were identified as putative targets of 56 DELs, and two and 44 DELs were predicted as precursors and endogenous target mimics (eTMs) of two and six DEMs, respectively. Based on these, the DEL-DEM-DEG regulatory network involved in TPD was constructed, and 13 hub DELs, three hub DEMs and two hub DEGs were identified. The results provide novel insights into the regulatory roles of ncRNAs underlying TPD and lay a foundation for future functional characterization of lncRNAs, miRNAs, and genes involved in TPD in rubber tree.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-16
    Description: Abies alba (Mill.) has a high potential for mitigating climate change in European mountain forests; yet, its natural regeneration is severely limited by ungulate browsing. Here, we simulated browsing in a common garden experiment to study growth and physiological traits, measured from bulk needles, using a randomized block design with two levels of browsing severity and seedlings originating from 19 populations across Switzerland. Genetic factors explained most variation in growth (on average, 51.5%) and physiological traits (10.2%) under control conditions, while heavy browsing considerably reduced the genetic effects on growth (to 30%), but doubled those on physiological traits related to carbon storage. While browsing reduced seedling height, it also lowered seedling water-use efficiency (decreased $delta ^{13}$C) and increased their $delta ^{15}$N. Different populations reacted differently to browsing stress, and for seedling height, starch concentration and $delta ^{15}$N, population differences appeared to be the result of natural selection. First, we found that populations originating from the warmest regions recovered the fastest from browsing stress, and they did so by mobilizing starch from their needles, which suggests a genetic underpinning for a growth-storage trade-off across populations. Second, we found that seedlings originating from mountain populations growing on steep slopes had a higher $delta ^{15}$N in the common garden than those originating from flat areas, indicating that they have been selected to grow on N-poor, potentially drained, soils. This finding was corroborated by the fact that nitrogen concentration in adult needles was lower on steep slopes than on flat ground, strongly indicating that steep slopes are the most N-poor environments. These results suggest that adaptation to climate and soil nitrogen availability, as well as ungulate browsing pressure, co-determine the regeneration and range limit of silver fir.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...