ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,094)
Collection
  • Articles  (4,094)
Publisher
Years
Journal
  • 1
    Publication Date: 2021-10-15
    Description: Nitrification inhibitors (NI) are aimed at improving N-fertilizer use efficiency in cropping systems. This study aimed to assess the nitrification inhibition potential and non-target effects of dry leaf powders (botanicals) of ten plant species [neem (Azadirachta indica), lantana (Lantana camara), karanda (Pongamia pinnata), Brachiaria humidicola, cinnamon (Cinnamomum verum), clove (Syzygium aromaticum), wild-sunflower (Tithonia diversifolia), mee (‎Madhuca longifolia), nutmeg (Myristica fragrans) and pepper (Piper nigram)]. The effect of botanicals on the growth of three ammonia oxidizing bacteria isolates (M4, M5 and M7) and NO3- formation in soil were tested in laboratory experiments. In a pot-experiment, botanicals were applied with urea to assess their effect on vegetative-growth of tomato and capsicum. The non-target effects of botanicals on soil bacteria and fungi, and seed germination were assessed separately. Dicyandiamide (DCD) was used as the positive control in all experiments. Only the growth of M7 was significantly suppressed by all botanicals except neem, Brachiaria and pepper. The highest shoot-biomass of tomato was obtained when urea was applied with pepper. Nitrate leaching from pots was significantly reduced (p
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-15
    Description: The application of organic amendments to agricultural soils enables the recycling of nutrients, further reducing the inputs of synthetic fertilizers for crop production. However, the production of N2O emissions is a concern that arises from such a practice. A 35-day incubation experiment was conducted with soils receiving three contrasting types of biosolids —mesophilic anaerobic digested (BM), composted (BC), and alkaline-stabilized (BA)— at four water-filled pore spaces (WFPS): 28, 40, 52, and 64%. A zero-N-addition control was also evaluated. Across all the three types of biosolids, N2O production increased with soil moisture content, with BM and BC producing the overall highest N2O fluxes. The most intense pulses of N2O production were exhibited by BC at the beginning of the incubation. The highest cumulative N2O production was found with 64% WFPS and from BC- (409 µg N2O–N kg−1 soil) or BM-amended soils (390 µg N2O–N kg−1 soil), which produced more than four and two times the emissions from the control and BA-amended soils at 64% WFPS, respectively. We also found the highest nitrification rates in the BM- and BC-amended soils. The total N2O production was exponentially associated with the NO3−–N concentration present at the end of the experiment (R2 = 0.83). Changes in the concentration of the soil available N indicated the occurrence of mineralization, nitrification, and denitrification over the incubation. These results provided insight into the interacting responses of N2O production to soil moisture contents, biosolids treatment stabilization and properties, and soil N availability.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-24
    Description: The complementary nature of different teaching approaches in facilitating student learning are rarely discussed in the literature. This study compared diverse teaching approaches in soil science education to explore how a combination of instructional approaches can support student learning. Student perspectives on lectures, problem-based learning, and experiential learning in three upper-level university soil science courses were assessed through student enrolment data and survey responses. Results emphasize the benefits of integrating theory and practice, and support the integration of concepts from soil physics, chemistry and biology within individual courses. All respondents who took two or more courses, indicated that the distinct teaching approaches, and the integration of soil physics, chemistry and biology within individual courses were beneficial to their learning. Lectures and problem-based learning were seen as pedagogically reciprocal, with theory supporting the application of knowledge for 75% students, while others noted that having the management course first, provided context for learning additional theory. A subset of students (n=9) indicated the relevance of the interdisciplinary nature of the courses for their current employment. Our findings suggest that combining knowledge-based and competency-based approaches may support both student learning and workforce demands, and that diverse teaching approaches can work together to support student learning. The research outcomes call for fellow instructors to diverge from the dichotomy of passive and active learning, and to consider the complementary nature of distinct teaching strategies.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-24
    Description: Weather stations often provide key information related to soil moisture, temperature and evaporation are used by farmers to decide farm operations of nearby agricultural fields. However, the site conditions at the weather stations where data are recorded may not be similar with these nearby fields. The objective of this study was to determine the level of discrepancies in surface soil moisture between weather stations and nearby agricultural fields based on 1) the soil texture, crop residue cover, crop type, growth stages and 2) temporal dependency of soil moisture to recent rainfall and evaporation rates. Soil moisture from 25 weather stations in the North Dakota Agricultural Weather Network (NDAWN) and 75 nearby fields were measured biweekly during the 2019 growing season in Red River Valley. Field characteristics including soil texture, crop residue cover, crop type and growth stages along with rainfall and potential evapotranspiration were collected during the study period. The regression analysis between surface soil moisture at weather station and nearby field showed higher values for corn at V10 stage (r2=0.92) and for wheat at flowering stage (r2=0.68) and opposite was observed with soybean. We found the regression coefficient of soil moisture with four-day cumulative rainfall slightly increased to 0.51 with an increase in percent residue cover resulting in a decreased root mean square error (RMSE) to 0.063 m3 m-3. In general, we observed that surface soil moisture at weather stations could reasonably predict moisture in nearby agricultural fields considering crop type, soil type, weather, and distance from weather station.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-24
    Description: Estimating soil N mineralization is critical to being able to balance fertilizer N requirements and their environmental impacts. In this study, net N mineralization was examined in soils under different crop rotations with each phase of the rotation present every year with biologically-based incubations in 2011 and 2015. Net N mineralization was significantly different among treatments when the current crop was soybean and the effect was dependent upon the previous crop and the cropping sequence. In particular, net increases in inorganic N were greater when the previous crop was winter wheat with/without red clover than if it were corn, and greater for the first year of soybean compared to the second year for rotations with two consecutive years of soybean in the 2011 incubation. However, cropping history did not influence net soil N mineralization when the current crop was either corn, winter wheat, or winter wheat + red clover. In 2015, the presence of red clover in the rotation increased net N mineralization in all phases of the rotation. These results suggest both current and previous crops should be considered when estimating the N supplying capacity (net mineralization) of the soil. Net mineralizable N was found to be significantly correlated with total amino sugars (P 〈 0.001), glucosamine (P 〈 0.001), and galactosamine (P = 0.003), which suggests that amino sugars could be used as an indicator of the N supplying capacity of soil.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-15
    Description: Balancing the weighting of various components of phosphorus loss in models is a critical but often overlooked step in accurate estimation of risk of P loss under field conditions. This study compared the P loss coefficients used to predict dissolved P losses from desorption from accumulated P in the soil, and those incidental to applications of P as fertilizer or manure, with extraction coefficients determined from actual P losses reported in literature for sites in Canada, with the addition of some sites with similar soils and climate from the northern tier of the United States. The extraction coefficients for dissolved P measured in runoff water was greater by a factor of 6.5X in year-round edge-of-field measurements than in runoff boxes, indicating that models using P extraction coefficients derived from runoff box experiments will be underestimating the magnitude of losses from P accumulation in soil. Differences among the measurement methods (runoff box, rainfall simulator or edge-of-field) were not evident for incidental losses from applied P, but current models appear to over-predict the losses of applied P. Good fit between measured and modelled DP concentrations were achieved by applying coefficients of 0.275 to the fertilizer equations, and 0.219 to the manure equations, implying that 72.5% of fertilizer P and 78% of manure P are not available for runoff. This study underlines the importance of considering the relative weights of the various components of P loss as new models are developed and validated.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-13
    Description: In humid regions, the number of macroaggregates on the soil surface could decline because of rainfall disturbance, or increase due to rainfall-activated chemical and biological processes. We took digital images of macroaggregates at the surface of clay and organic soils six times during a 68-d period with 264 mm natural rainfall. Based on the constant or increasing number of surface macroaggregates during the five time intervals, rainfall did not disturb macroaggregates. Macroaggregate persistence was positively correlated with cumulative rainfall (both soils) and soil moisture (organic soil), so we infer that rainfall promoted macroaggregate assemblage through chemical and biological processes.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-13
    Description: Soil moisture level is crucial to soil phosphorus (P) availability. However, there is no quantitative research on the relation between soil P availability and moisture level. In addition, biochar application could also alter soil P availability at different moisture levels. In this study, a 16-day soil incubation experiment was conducted at a laboratory-scale to analyze the effects of soil moisture and P fertilization regimes (P-laden biochar fertilizer and conventional mineral P fertilizer) on soil P availability and fractionation. The results showed that soil P availability was positively correlated with soil moisture level (Pearson coefficients ranged from 0.46 to 0.91). High moisture level would lead to less amount of P in readily available fractions under P-laden biochar application. However, even with less P in readily available fractions, P-laden biochar could maintain soil P availability (117.7 mg P m-2) at a similar level as the conventional P fertilizer (116.1 mg P m-2).
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-12
    Description: Biochar, a carbon-rich material produced by the pyrolysis of organic residues, is frequently used as a soil amendment to enhance soil fertility and improve soil properties in tropical climates. However, in temperate agriculture, the impact of biochar on soil and plant productivity remains uncertain. The objective of this review is to give an overview of the challenges and opportunities of using biochar as an amendment in temperate soils. Among the various challenges, the type of feedstock and the conditions during pyrolysis produces biochars with different chemical and physical properties, resulting in contrasting effects on soils and crops. Furthermore, biochar aging, biochar application rates and its co-application with mineral fertilizer and/or organic amendments add further complexity to our understanding of the soil-amendment-plant continuum. Although its benefits on crop yield are not yet well demonstrated under field studies, other agronomic benefits of biochar in temperate agriculture have been documented. In this review, we proposed a broader view of biochar as a temperate soil amendment, moving beyond our current focus on crop productivity, and instead target its capacity to improve soil properties. We explored biochar’s benefits in remediating low productive agricultural lands, and its environmental benefits through long-term carbon sequestration and reduced nutrient leaching while curtailing our reliance on fertilizer input. We also discussed the persistence of beneficial impacts of biochar in temperate field conditions. We concluded biochar displays great prospective to improve soil health and its productivity, enhance plant stress resilience, mitigate greenhouse gas emissions and restore degraded soils in temperate agriculture.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-05
    Description: Soil structure plays a critical role in agroecosystems because it controls soil air and water capacity, nutrient availability, and crop root growth. A field experiment was conducted to evaluate the effect of bentonite on soil relative water content, soil cone penetration resistance, soil bulk density, aggregate size distribution, and millet crop yield components in a semi-arid region in northern China from 2011 to 2015. Treatments consisted of six bentonite rates (0, 6, 12, 18, 24, and 30 Mg·ha−1) applied only in the initial year. Addition of bentonite significantly increased soil relative water throughout the profile (0–60 cm) and aggregates in 0.25–2 mm class in 0–40 cm depth; it significantly decreased soil bulk density, soil cone penetration resistance, and aggregates in 0.053–0.25 mm class in the 0–40 cm depth. All of the bentonite treatments significantly increased 1000-kernel weight and panicle number up to 16% and 33%, respectively, but did not affect kernels per spike. Treatment with 24 Mg·ha−1 bentonite achieved the greatest effect on all the soil physical parameters and crop yield components averaged over all years; the highest application rate (30 Mg·ha−1) had an increasing effect over time. This study indicates that application of bentonite improves soil health in sandy-loam soil in a semi-arid region, and thus it would help promote sustainable agriculture development in regions with similar soil and climate.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...