ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,027)
Collection
  • Articles  (2,027)
Years
Topic
  • 1
    Publication Date: 2021-06-04
    Description: We use results of satellite-based interferometric synthetic aperture radar, Global Positioning System, and borehole inclinometer data to constrain numerical models that improve understanding of slope deformation at the Alexandria landslide, British Columbia, Canada. Surface monitoring data and borehole slope inclinometer measurements provide important insight into the slope failure mechanism. We initially analyzed the data in a geographic information system (GIS) to create thematic maps of the landslide area (hillshade, slope, and aspect), to identify key geological features, and to produce an engineering geomorphology map of the landslide. The monitoring data and the geological/engineering geomorphological models provide important constraints for two-dimensional landslide limit equilibrium and finite difference analyses. The initial limit equilibrium analysis improved understanding of the sliding surfaces. The finite difference models were then used to simulate and investigate the potential slope deformation mechanism. The combined slope monitoring/modeling results show that the Alexandria landslide is a slow-moving, multiple-block, retrogressive slope failure. The close agreement between the limit equilibrium and finite difference analyses, together with the satellite and ground-based slope monitoring and GIS data, highlight the importance of using a multidisciplinary/integrated approach in landslide studies.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-04
    Description: On March 20, 1941, more than 110,000 yd3 (84,000 m3) of rock slumped from Brilliant Cut in Pittsburgh, Pennsylvania. Failure was triggered by water pressure buildup due to ice blockage of drainage outlets on the slope face. I investigated this slide as part of my Ph.D. research at the University of Pittsburgh in 1968–1969 and have continued to study it. Historical photographs discovered in 1997 provided new insights on the construction and failure of Brilliant Cut and led to this re-evaluation. In this paper, my 1968–1969 work is summarized and then additional geological and historical information is presented along with key observations from the historical photographs. These photographs reveal that slope excavation at Brilliant Cut in 1930–1931 removed lateral support, in turn initiating stress release and progressive failure that loosened or broke bedrock adjacent to the cut. This fractured rock mass remained marginally stable for a decade but then collapsed in March 1941. The 1941 failure was triggered by water held back in rock fractures by a frozen crust over talus and fractured rock on the slope face. A progressive failure mechanism by Brooker and Peck explains the behavior of Brilliant Cut from 1931 to 1941. Sliding Block stability analyses demonstrate the mechanism of progressive failure and suggest that friction angles were reduced gradually to near-residual values along the failure surface, with low water levels in the slope. With drainage blocked in 1941, a water level developed about 30 ft (9 m) above the basal failure surface to initiate the catastrophic failure. This water level is below that previously inferred to have existed at the time of failure.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-13
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-30
    Description: Substantial advances have been achieved in various aspects of debris-flow hazard assessments over the past decade. These advances include sophisticated ways to date previous events, two- and three-dimensional runout models including multi-phase flows and debris entrainment options, and applications of extreme value statistics to assemble frequency–magnitude analyses. Pertinent questions have remained the same: How often, how big, how fast, how deep, how intense, and how far? Similarly, although major life loss attributable to debris flows can often, but not always, be avoided in developed nations, debris flows remain one of the principal geophysical killers in mountainous terrains. Substantial differences in debris-flow hazard persist between nations. Some rely on a design magnitude associated with a specific return period; others use relationships between intensity and frequency; and some allow for, but do not mandate, in-depth quantitative risk assessments. Differences exist in the management of debris-flow risks, from highly sophisticated and nation-wide applied protocols to retroaction in which catastrophic debris flows occur before they are considered for mitigation. Two factors conspire to challenge future generations of debris-flow researchers, practitioners, and decision makers: Population growth and climate change, which are increasingly manifested by augmenting hydroclimatic extremes. While researchers will undoubtedly finesse future remote sensing, dating, and runout techniques and models, practitioners will need to focus on translating those advances into practical cost-efficient tools and integrating those tools into long-term debris-flow risk management.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-30
    Description: Laboratory experiments on granular flows remain essential tools for gaining insight into several aspects of granular dynamics that are inaccessible from field-scale investigations. Here, we report an experimental campaign on steady dry granular flows in a flume with inclination of 35°. Different flow rates are investigated by adjusting an inflow gate, while various kinematic boundary conditions are observed by varying the basal roughness. The flume is instrumented with high-speed cameras and a no-flicker LED lamp to get reliable particle image velocimetry measurements in terms of both time averages and second-order statistics (i.e., granular temperature). The same measuring instruments are also used to obtain concurrent estimations of the solid volume fraction at the sidewall by employing the stochastic-optical method (SOM). This innovative approach uses a measurable quantity, called two-dimensional volume fraction, which is correlated with the near-wall volume fraction and is obtainable from digital images under controlled illumination conditions. The knowledge of this quantity allows the indirect measurement of the near-wall volume fraction thanks to a stochastic transfer function previously obtained from numerical simulations of distributions of randomly dispersed spheres. The combined measurements of velocity and volume fraction allow a better understanding of the flow dynamics and reveal the superposition of different flow regimes along the flow depth, where frictional and collisional mechanisms exhibit varying relative magnitudes.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-30
    Description: Debris flows are one of the most complex and devastating natural phenomena, and they affect mountainous areas throughout the world. Structural measures are currently adopted to mitigate the related hazard in urbanized areas. However, their design requires an estimate of the impact force, which is an open issue. The numerous formulae proposed in the literature require the assignment of empirical coefficients and an evaluation of the kinematic characteristics of the incoming flow. Both are generally not known a priori. In this article, we present the Grand Valey torrent site (Italian Alps). A monitoring system made up of strain gauges was installed on a filter barrier at the site, allowing the evaluation of impact forces. The system provides pivotal information for calibrating impact formulae. Two debris flows occurred during the monitoring period. We present the interpretation of videos, impact measurements, and the results of numerical analyses. The combined analysis allows a back calculation of the events in terms of forces, flow depth, and velocity. Thus, we investigate the applicability of the impact formulae suggested in the literature and of the recommended empirical coefficients. The results highlight that hydrostatic effects dominated the impact during the first event, while hydrodynamic effects prevailed in the second one.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-22
    Description: This study assessed the performance of residual soils with regard to their macrostructural and microstructural properties and compatibility with leachate in pursuit of exploring alternative cost-effective and efficient landfill liner materials. A series of laboratory investigations was conducted on three residual soil samples by using tap water and leachate as permeation fluid to achieve the objectives of the study. The zeta potential measurements revealed that the presence of multivalent cations in the leachate decreased the diffuse double layer (DDL) thickness around the soil particles. The reduced DDL thickness caused a decrease in Atterberg limits of soil-leachate samples and changes in the classification of fine fractions. Additionally, the effects of pore clogging attributed to chemical precipitation and bioclogging were responsible for the reduction in measured hydraulic conductivities of soil-leachate samples. These effects can be clearly observed from the field-emission scanning electron microscopy images of soil-leachate samples with the appearance of less visible voids that led to a more compact and dense structure. The formation of new non-clay minerals and associated changes in the Al and Si ratio as reflected in the x-ray diffraction diffractograms and energy-dispersive x-ray analyses, respectively, were attributed to the effects of chemical precipitation. This study concluded that S1 and S2 residual soil samples are potential landfill liner materials because they possess adequate grading characteristics, adequate unconfined compressive strength, low hydraulic conductivity, and good compatibility with leachate. In contrast, the S3 sample requires further treatment to enhance its properties in order to comply with the requirements of landfill liner materials.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-15
    Description: The instrumental monitoring of torrential catchments is a fundamental research task and provides necessary information to improve our understanding of the mechanisms of debris flows. While most monitoring sites include meteorological sensors and analyze the critical rainfall conditions, very few contain soil moisture measurements. In our monitoring site, the Rebaixader catchment, 11 debris flows and 24 debris floods were detected during the last 9 years. Herein, the initiation mechanisms of these torrential flows were analyzed, focusing on the critical rainfall conditions and the soil water dynamics. Comparing the temporal distribution of both rainfall episodes and torrential flows, the Kernel density plots showed maximum values for rainfalls at the beginning of June, while the peak for torrential flows is on July 20. Thus, the antecedent rainfall, and especially the soil moisture conditions, may influence the triggering of torrential flows. In a second step, a new updated rainfall threshold was proposed that included total rainfall duration and mean intensity. The analysis of soil moisture data was more complicated, and no clear trends were observed in the data set. Therefore, additional data have to be recorded in order to quantitatively analyze the role of soil moisture on the triggering of flows and for the definition of thresholds. Some preliminary results show that the soil moisture at the beginning of a rainfall event affects the maximum increase of soil moisture, while a slight trend was visible comparing the initial soil moisture with the necessary rainfall amount to trigger a torrential flow.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-11
    Description: The objective of this study was to evaluate the factors that contribute to the high frequency of landslides in the Kope Formation and the overlying colluvial soil present in the Cincinnati area, southwestern Ohio. The Kope Formation consists of approximately 80 percent shale inter-bedded with 20 percent limestone. The colluvium that forms from the weathering of the shale bedrock consists of a low-plasticity clay. Based on field observations, LiDAR data, and information gathered from city and county agencies, we created a landslide inventory map for the Cincinnati area, identifying 842 landslides. From the inventory map, we selected 10 landslides that included seven rotational and three translational slides for detailed investigations. Representative samples were collected from the landslide sites for determining natural water content, Atterberg limits, grain size distribution, shear strength parameters, and slake durability index. For the translational landslides, strength parameters were determined along the contact between the bedrock and the overlying colluvium. The results of the study indicate that multiple factors contribute to landslide susceptibility of the Kope Formation and the overlying colluvium, including low shear strength of the colluvial soil, development of porewater pressure within the slope, human activity such as loading the top or cutting the toe of a slope, low to very low durability of the bedrock that allows rapid disintegration of the bedrock and accumulation of colluvial soil, undercutting of the slope toe by stream water, and steepness of the slopes.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-03
    Description: Regional-scale assessments for debris-flow and debris-flood propagation and avulsion on fans can be challenging. Geomorphological mapping based on aerial or satellite imagery requires substantial field verification effort. Surface evidence of past events may be obfuscated by development or obscured by repeat erosion or debris inundation, and trenching may be required to record the sedimentary architecture and date past events. This paper evaluates a methodology for debris-flow and debris-flood susceptibility mapping at regional scale based on a combination of digital elevation model (DEM) metrics to identify potential debris source zones and flow propagation modeling using the Flow-R code that is calibrated through comparison to mapped alluvial fans. The DEM metrics enable semi-automated identification and preliminary, process-based classification of streams prone to debris flow and debris flood. Flow-R is a susceptibility mapping tool that models potential flow inundation based on a combination of spreading and runout algorithms considering DEM topography and empirical propagation parameters. The methodology is first evaluated at locations where debris-flow and debris-flood hazards have been previously assessed based on field mapping and detailed numerical modeling. It is then applied over a 125,000 km2 area in southern British Columbia, Canada. The motivation for the application of this methodology is that it represents an objective and repeatable approach to susceptibility mapping, which can be integrated in a debris-flow and debris-flood risk prioritization framework at regional scale to support risk management decisions.
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...