ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (282)
Collection
  • Articles  (282)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-08-20
    Description: The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O2 in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives—integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean–atmosphere system in anoxic, low-oxygen, and high-oxygen states. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic–anoxic boundary layers in the ocean. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-20
    Description: A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-20
    Description: Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-20
    Description: A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-20
    Description: Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-25
    Description: Ocean temperature variability is a fundamental component of the Earth's climate system, and extremes in this variability affect the health of marine ecosystems around the world. The study of marine heatwaves has emerged as a rapidly growing field of research, given notable extreme warm-water events that have occurred against a background trend of global ocean warming. This review summarizes the latest physical and statistical understanding of marine heatwaves based on how they are identified, defined, characterized, and monitored through remotely sensed and in situ data sets. We describe the physical mechanisms that cause marine heatwaves, along with their global distribution, variability, and trends. Finally, we discuss current issues in this developing research area, including considerations related to the choice of climatological baseline periods in defining extremes and how to communicate findings in the context of societal needs. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-21
    Description: Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-21
    Description: Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have effects on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including river–ocean mixing, upwelling, air–water gas exchange, biological production and subsequent respiration, anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 ( pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-21
    Description: The Deepwater Horizon oil spill was the largest, longest-lasting, and deepest oil accident to date in US waters. As oil and natural gas jetted from release points at 1,500-m depth in the northern Gulf of Mexico, entrainment of the surrounding ocean water into a buoyant plume, rich in soluble hydrocarbons and dispersed microdroplets of oil, created a deep (1,000-m) intrusion layer. Larger droplets of liquid oil rose to the surface, forming a slick of mostly insoluble, hydrocarbon-type compounds. A variety of physical, chemical, and biological mechanisms helped to transform, remove, and redisperse the oil and gas that was released. Biodegradation removed up to 60% of the oil in the intrusion layer but was less efficient in the surface slick, due to nutrient limitation. Photochemical processes altered up to 50% (by mass) of the floating oil. The surface oil expression changed daily due to wind and currents, whereas the intrusion layer flowed southwestward. A portion of the weathered surface oil stranded along shorelines. Oil from both surface and intrusion layers were deposited onto the seafloor via sinking marine oil snow. The biodegradation rates of stranded or sedimented oil were low, with resuspension and redistribution transiently increasing biodegradation. The subsequent research efforts increased our understanding of the fate of spilled oil immensely, with novel insights focusing on the importance of photooxidation, the microbial communities driving biodegradation, and the formation of marine oil snow that transports oil to the seafloor. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...