ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (825)
Collection
  • Articles  (825)
Publisher
Years
Journal
  • 1
    Publication Date: 2020-09-14
    Description: This paper carried out the study on removal of ammonium from aqueous solutions by zeolite derived from electrolytic manganese residue (EMR) via a fusion method. The variables of pH, contact time, EMRZ (EMR-based zeolite) dosage, initial ammonium concentration, and competitive cations and anions on the ammonium uptake capacity were systematically investigated in an attempt to illustrate adsorption performance of EMRZ. The results show that these influence factors had a remarkable impact on the ammonium uptake capacity of EMRZ. Maximum ammonium uptake capacity was achieved at pH value 8.0, EMRZ dosage 0.2 g/100 mL, contact time 100 min, initial ammonium concentration 200 mg/L, and temperature 35°C. Under optimized conditions, ammonium uptake capacity onto EMRZ was up to 27.89 mg/g. The competitive degree of cations in ammonium adsorption process follows the sequence of Na+〉K+〉Ca2+〉Mg2+, and the sequence of anion effect on ammonium removal onto EMRZ is CO32− 〉 Cl− 〉 SO42− 〉 PO43−. The adsorption kinetic was explored and best represented by pseudo-second-order kinetic model. And the adsorption isotherm experimental data had best fitness with the Freundlich and Koble–Corrigan model, suggesting that heterogeneous uptake was the principal mechanism adopted in the process of ammonium adsorption. Moreover, calculation of thermodynamic parameters such as change in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) was carried out and it was determined to be −15.77∼−14.03 kJ·mol−1, +37.66 kJ·mol−1, and +173.38 J·mol−1·K−1, respectively. These parameters confirmed that ammonium uptake onto EMRZ was an endothermic and spontaneous process. Moreover, no obvious deterioration tendency was observed for the regenerated EMRZ compared with fresh EMRZ. These results indicate that EMRZ has wide application prospects in removing ammonium from wastewater.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-04
    Description: High temperature is the main factor responsible for degrading the lubrication and antiwear properties of aero-lubricating oils. Accordingly, this study assessed the effects of thermal treatment of diester aviation lubricating oil and the associated mechanism. Fourier-transform infrared spectroscopy and gas chromatography/mass spectrometry analyses showed that low-molecular-weight compounds, such as monoesters, diesters, alcohols, and olefins, were the primary degradation products. An assessment of the degradation mechanism of bis(2-ethylhexyl)decanedioate showed that pyrolysis, resulting in the cleavage of β-C–H and C–C bonds, was the main process involved. Additional investigation using advanced polymer chromatography showed that the molecular weights of oil samples changed slightly at high temperatures, while the viscosity and viscosity-temperature index values were relatively stable. High-pressure differential scanning calorimetry established that the thermal oxidation stability of these oils decreased above 250°C. Finally, variations in the chemical compositions of the oil samples were found to be highly correlated with changes in physicochemical properties during thermal processing, with the formation of low-molecular-weight polar compounds greatly increasing the acid numbers of the oils.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-28
    Description: The unstoppable quest for low-cost reinforcing agent gingered the enthusiasm towards developing and utilising the agro-based waste product as reinforcement since they are promptly accessible, sustainable, and inexpensive to purchase. In this study, AA6061/rice husk ash matrix composites were produced through metallurgical stir casting techniques. Different weight percentages of reinforcement in the range of 2%, 4%, 6%, and 8% were used to fabricate the composites. The reinforced composites were characterized by SEM/EDS for microstructural study. The mechanical behaviour was examined for all the produced samples. SEM/EDS analysis revealed the presence of silica, a major constituent of rice husk ash in the produced composites. The results of the mechanical behaviour show that upgrading the weight percentage of reinforcing agent increases the mechanical properties. AA6061/8% rice hush ash generated a consistent rise with filler concentration in comparison with the aluminium alloy in all operating functions.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-25
    Description: The article addresses the extended Graetz–Nusselt problem in finite-length microchannels for prescribed wall heat flux boundary conditions, including the effects of rarefaction, streamwise conduction, and viscous dissipation. The analytical solution proposed, valid for low-intermediate Peclet values, takes into account the presence of the thermal development region. The influence of all transport parameters (Peclet Pe, Knudsen Kn, and Brinkman Br) and geometrical parameters (entry length and microchannel aspect ratio) is investigated. Performances of different wall heat flux functions have been analyzed in terms of the averaged Nusselt number. In the absence of viscous dissipation Br=0, the best heating protocol is a decreasing wall heat flux function. In the presence of dissipation Br〉0, the best heating protocol is a uniform wall heat flux.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-25
    Description: At present, there are two main standards, ISO 23828 : 2013 and SAE J 2572–2014, which prescribe the hydrogen consumption test using the pressure method, gravimetric method, and flow method. However, these methods do not meet the test requirements for electric energy consumption and the range of plug-in hybrid fuel cell vehicles (FCVs) which are the main technical considerations in China and Europe. In this paper, a new test method for the hydrogen consumption, electric energy consumption, and range of FCVs is proposed without the use of additional hydrogen supply, measurement instruments, or energy consumption correction, which can improve the operability of the test and avoid the conversion between electric energy and hydrogen. One plug-in hybrid FCV and one nonplug-in hybrid FCV were tested using the proposed method. The results show that the new method meets the requirements of fuel economy test for FCVs with hydrogen consumption rate, electric energy consumption rate, the range for plug-in hybrid FCVs, hydrogen consumption rate, and the range for nonplug-in FCVs.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: 5-Hydroxymethylfurfural as a versatile organic compound is considered as a promising biomass-derived product via hydrolysis followed by dehydration of lignocellulosic biomass using solid catalysts. In this study, lignocellulosic materials (corncob) were utilized to synthesize 5-hydroxymethylfurfural via solid acid catalytic conversion. The precursor of the catalyst material was chemically impregnated with ZnCl2 prior to carbonization. The solid catalyst was prepared with three different acid concentrations of 98%, 96%, and 94% of sulfuric acid. The prepared catalyst was characterized by acid density elemental analysis, FTIR, XRD, and SEM. The maximum result of the total acid density and amount of SO3H group was recorded as 3.5 mmol/g and 0.61 mmol/g, respectively, with high sulfur content of 1.87%. The result from FTIR spectra of BC-SO3H−1 confirms the incorporation of -SO3H groups into the carbon material. BC-SO3H−1 was selected based on the acid density and elemental analysis of the catalyst. The activity of the selected catalyst (BC-SO3H−1) was studied on the transformation of corncob to 5-hydroxymethylfurfural using biphasic solvent (water: ethyl acetate) and NaCl in the reaction medium. The intermediate result in the hydrolysisdehydration reaction was analyzed using FTIR and the functional groups observed confirm the occurrence of 5-HMF in the intermediate reaction result.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-03
    Description: In this study, mixed oxides of Mn-Cu and Fe-Cu on OMS-2 support having an octahedral structure were synthesized by the refluxing and impregnation methods. The characteristics of the materials were analyzed by XRD, FTIR, SEM, EDX, and H2-TPR. In the CO oxidation test, CuFeOx/OMS-2 had slightly higher catalytic activity but is significantly more stable than CuMnOx/OMS-2 and CuO/OMS-2. Due to its lower reduction temperature in H2-TPR analysis, the Mars-Van-Krevelen mechanism for CuFeOx/OMS-2 (Cu2+–O–Fe3+ ↔ Cu+–□–Fe2+) could take place more energetically than CuO/OMS-2 and CuMnOx/OMS-2 (Cu2+–O2−–Mn4+ ↔ Cu+–□–Mn3+). In addition, the interaction between Fe and Cu in the catalyst could improve the durability of the surface oxides structure in comparison with that between Mn and Cu. With the high specific rate and TOF of 28.6 mmol/h.g and 0.508, respectively, CuFeOx/OMS-2 has a great potential as an effective catalyst for low-temperature oxidation application in CO and possible VOCs removal.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-23
    Description: In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-20
    Description: The removal of brilliant green (BG) dye from an aqueous solution using activated carbon (AC) derived from guava tree wood is conducted in batch conditions. The influence of different factors such as contact time, pH, adsorbent dosage, initial dye concentration, and temperature on the adsorption of BG onto AC was investigated. FTIR, BET, and SEM analyses were performed to determine the characteristics of the material. The isotherm results were analyzed using the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. Linear regression was used to fit the experimental data. It was found that the equilibrium data are best represented by the Freundlich isotherm, and the adsorption capacity (qe) was 90 mg dye/g AC. The values of the free energy (∆G), enthalpy (∆H), and entropy (∆S) were −86.188 kJ/mol, 43.025 kJ/mol, and 128 J/mol.K, respectively, at pH 7 for the BG dye. The kinetics of BG dye adsorption were analyzed using pseudo-first-order and pseudo-second-order models, and it was found that the pseudo-second-order model was suitable for the behavior of the BG dye at R2 = 0.999.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-23
    Description: Wax deposition from crude oil that blocks the pipeline and increases the viscosity of the fluid is considered as a serious challenge for petroleum transportation. Employment of chemical additives, the so-called pour point depressants (PPDs), is widely used to solve this problem. Among them are the ethylene-vinyl acetate (EVA) copolymers (EVAc), containing a polyethylene segment along the backbone with vinyl acetate. To improve the performance of EVAc as PPD, the compositions of this polymer with crude gossypol (CG), isolated from the refined cottonseed oil soapstock, were prepared by joint milling in a ball mill. Prepared compositions were characterized by Fourier transform infrared (FTIR), ultraviolet (UV), and nuclear magnetic resonance (NMR) spectroscopy. The pour point and viscosity of the crude oil from the Akshabulak oil field (Kazakhstan) were studied. The compositions with 10, 20, and 25 wt% of CG demonstrate better efficiency as PPD for crude oil than EVAc at the dosage of PPD of 50, 100, 250, and 500 ppm. The improved properties of the obtained PPD in comparison with the commercial EVAc is explained by the appearance of additional nonpolar and polar groups caused by the formation of the EVAc/CG composition.
    Print ISSN: 1687-806X
    Electronic ISSN: 1687-8078
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...