ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (439)
Sammlung
  • Artikel  (439)
Erscheinungszeitraum
Zeitschrift
Thema
  • 1
    Publikationsdatum: 2021-10-27
    Beschreibung: We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl4−/0/+ and Mg is ionic in all these six systems.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-10-27
    Beschreibung: The paper presents an analysis of data on the cross sections of electron impact ionization of atoms of alkali metals, hydrogen, noble gases, some transition metals and Al, Fe, Ni, W, Au, Hg, U. For the selected sets of experimental and theoretical data, an optimal analytical formula is found and approximation coefficients are calculated. The obtained semi-empirical formula reproduces the values of the ionization cross sections in a wide range of energies with an accuracy of the order of error of the available theoretical and experimental data.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-10-26
    Beschreibung: Many-body physics poses one of the greatest challenges to science in the 21st century. Still more daunting is the problem of accurately calculating the properties of quantum many-body systems in the strongly correlated regime. Cold atomic gases provide an excellent test ground, for both experimentalists and theorists, to study the exotic and sometimes counterintuitive behavior of quantum many-body problems. Of particular interest is the appearance of collective excitations in these systems, such as the famous Goldstone mode and the elusive Higgs mode. It is particularly important to assess the robustness of theoretical and computational techniques to study such excitations. We build on the unprecedented opportunity provided by the fact that, in some cases, exact numerical predictions can be obtained through quantum Monte Carlo. We use these predictions to assess the accuracy of the Random Phase Approximation, which is widely considered to be a method of choice for the study of the collective excitations in a cold atomic Fermi gas modeled with a Fermi–Hubbard Hamiltonian. We found good agreement between the two methodologies for the dynamic properties, particularly for the position of the Goldstone mode. We also explored the possibility of using a renormalized, effective potential in place of the physical potential. We determined that using a renormalized potential is likely too simplistic a method for improving the accuracy of generalized Random Phase Approximation and that a more sophisticated approach is needed.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-10-23
    Beschreibung: The approximate solution of the nonlinear Thomas–Fermi (TF) equation for ions is found by the Fermi method. The solution is based on the new asymptotic representation of the TF ion size valid for any ionization degree. The two universal functions and their derivatives, introduced by Fermi, are calculated by recent effective algorithms for the Emden–Fowler type equations with the accuracy sufficient for majority of applications. The comparison of our results with those obtained previously shows high accuracy and validity for arbitrary values of ionization degree. This study could potentially be of interest for the statistical TF method applications in physics and chemistry.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-10-22
    Beschreibung: Polarizabilities and hyperpolarizabilities, α1, β1, γ1, α2, β2, γ2, α3, β3, γ3, δ and ε of hydrogenic systems have been calculated in the presence of a Debye–Huckel potential, using pseudostates for the S, P, D and F states. All of these converge very quickly as the number of terms in the pseudostates is increased and are essentially independent of the nonlinear parameters. All the results are in good agreement with the results obtained for hydrogenic systems obtained by Drachman. The effective potential seen by the outer electron is −α1/x4 + (6β1 − α2)/x6 + higher-order terms, where x is the distance from the outer electron to the nucleus. The exchange and electron–electron correlations are unimportant because the outer electron is far away from the nucleus. This implies that the conventional variational calculations are not necessary. The results agree well with the results of Drachman for the screening parameter equal to zero in the Debye–Huckel potential. We can calculate the energies of Rydberg states by using the polarizabilities and hyperpolarizabilities in the presence of Debye potential seen by the outer electron when the atoms are embedded in a plasma. Most calculations are carried out in the absence of the Debye–Huckel potential. However, it is not possible to carry out experiments when there is a complete absence of plasma at a particular electron temperature and density. The present calculations of polarizabilities and hyperpolarizabilities will provide accurate results for Rydberg states when the measurements for such states are carried out.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-10-21
    Beschreibung: Gathering data on electron collisions in plasmas is a vital part of conducting plasma simulations. However, data on neutral radicals and neutrals formed in the plasma by reactions between different radicals are usually not readily available. While these cross-sections can be calculated numerically, this is a time-consuming process and it is not clear from the outset which additional cross-sections are needed for a given plasma process. Hence, identifying species for which additional cross-sections are needed in advance is highly advantageous. Here, we present a structured approach to do this. In this, a chemistry set using estimated data for unknown electron collisions is run in a global plasma model. The results are used to rank the species with regard to their influence on densities of important species such as electrons or neutrals inducing desired surface processes. For this, an algorithm based on graph theory is used. The species ranking helps to make an informed decision on which cross-sections need to be calculated to improve the chemistry set and which can be neglected to save time. The validity of this approach is demonstrated through an example in an SF6/O2 plasma.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-10-18
    Beschreibung: We reinvestigate a key process in electron-atom collision physics, the elastic scattering of electrons from helium atoms. Specifically, results from a special-purpose relativistic polarized-orbital method, which is designed to treat elastic scattering only, are compared with those from a very extensive, fully ab initio, general-purpose B-spline R-matrix (close-coupling) code.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-10-16
    Beschreibung: Two-dimensional semiconductors inside optical microcavities have emerged as a versatile platform to explore new hybrid light–matter quantum states. A strong light–matter coupling leads to the formation of exciton-polaritons, which in turn interact with the surrounding electron gas to form quasiparticles called polaron-polaritons. Here, we develop a general microscopic framework to calculate the properties of these quasiparticles, such as their energy and the interactions between them. From this, we give microscopic expressions for the parameters entering a Landau theory for the polaron-polaritons, which offers a simple yet powerful way to describe such interacting light–matter many-body systems. As an example of the application of our framework, we then use the ladder approximation to explore the properties of the polaron-polaritons. Furthermore, we show that they can be measured in a non-demolition way via the light transmission/reflection spectrum of the system. Finally, we demonstrate that the Landau effective interaction mediated by electron-hole excitations is attractive leading to red shifts of the polaron-polaritons. Our work provides a systematic framework to study exciton-polaritons in electronically doped two-dimensional materials such as novel van der Waals heterostructures.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-10-14
    Beschreibung: In the present paper, the correction of the recombination and ionization processes of the hydrogen atom due to the thermal interaction of two charges was considered. The evaluation was based on a rigorous quantum electrodynamic (QED) approach within the framework of perturbation theory. The lowest-order radiative correction to the recombination/ionization cross-section was examined for a wide range of temperatures corresponding to laboratory and astrophysical conditions. The found thermal contribution was discussed both for specific states and for the total recombination and ionization coefficients.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2021-09-22
    Beschreibung: Thin Co films were deposited on quartz and Corning glass by radio frequency magnetron sputtering. The films were postannealed at 500 °C in a furnace in air atmosphere. The resulting samples were examined with X-ray diffraction experiments, which revealed that they consist of single-phase, polycrystalline Co3O4. The morphology of selected samples was recorded by atomic force microscopy. Ultraviolet-visible light absorption spectroscopy experiments probed the absorbance of the films in the wavelength range 200–1,100 nm. Two types of transitions (energy gaps) were clearly identified. Both of them were found to be “blue shifted” with decreasing film thickness; this is interpreted as evidence of quantum confinement effects. For the case of the first gap value, this was corroborated by calculations based on a combination of the Potential Morphing Method and the effective mass approximation.
    Digitale ISSN: 2218-2004
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...