ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14,883)
Collection
  • Articles  (14,883)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-28
    Description: Pathogenic variants that disrupt human mitochondrial protein synthesis are associated with a clinically heterogenous group of diseases. Despite an impairment in oxidative phosphorylation being a common phenotype, the underlying molecular pathogenesis is more complex than simply a bioenergetic deficiency. Currently, we have limited mechanistic understanding on the scope by which a primary defect in mitochondrial protein synthesis contributes to organelle dysfunction. Since the proteins encoded in the mitochondrial genome are hydrophobic and need co-translational insertion into a lipid bilayer, responsive quality control mechanisms are required to resolve aberrations that arise with the synthesis of truncated and misfolded proteins. Here, we show that defects in the OXA1L-mediated insertion of MT-ATP6 nascent chains into the mitochondrial inner membrane are rapidly resolved by the AFG3L2 protease complex. Using pathogenic MT-ATP6 variants, we then reveal discrete steps in this quality control mechanism and the differential functional consequences to mitochondrial gene expression. The inherent ability of a given cell type to recognize and resolve impairments in mitochondrial protein synthesis may in part contribute at the molecular level to the wide clinical spectrum of these disorders.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: The regeneration-associated gene (RAG) expression program is activated in injured peripheral neurons after axotomy and enables long-distance axon re-growth. Over 1000 genes are regulated, and many transcription factors are upregulated or activated as part of this response. However, a detailed picture of how RAG expression is regulated is lacking. In particular the transcriptional targets and specific functions of the various transcription factors are unclear. Jun was the first regeneration-associated transcription factor identified and the first shown to be functionally important. Here we fully define the role of Jun in the RAG expression program in regenerating facial motor neurons. At 1, 4, and 14 days after axotomy, Jun upregulates 11%, 23% and 44% of the RAG program, respectively. Jun functions relevant to regeneration include cytoskeleton production, metabolic functions and cell activation, and the down-regulation of neurotransmission machinery. In silico analysis of promoter regions of Jun targets identifies stronger over-representation of AP1-like sites than CRE-like sites, although CRE sites were also over-represented in regions flanking AP1 sites. Strikingly, in motor neurons lacking Jun, an alternative SRF-dependent gene expression program is initiated after axotomy. The promoters of these newly expressed genes exhibit over-representation of CRE sites in regions near to SRF target sites. This alternative gene expression program includes plasticity-associated transcription factors, and leads to an aberrant early increase in synapse density on motor neurons. Jun thus has the important function in the early phase after axotomy of pushing the injured neuron away from a plasticity response and towards a regenerative phenotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: The molecular mechanisms leading to high altitude pulmonary hypertension (HAPH) remains poorly understood. We previously analyzed the whole genome sequence of Kyrgyz highland population and identified eight genomic intervals having a potential role in HAPH. Tropomodulin 3 gene (TMOD3) which encodes a protein that binds and caps the pointed ends of actin filaments and inhibits cell migration, was one of the top candidates. Here we systematically sought additional evidence to validate the functional role of TMOD3. In-silico analysis reveals that some of the SNPs in HAPH associated genomic intervals were positioned in a regulatory region that could result in alternative splicing of TMOD3. In order to functionally validate the role of TMOD3 in HAPH, we exposed Tmod3−/+ mice to 4 weeks of constant hypoxia, i.e. 10% O2 and analyzed both functional (hemodynamic measurements) and structural (angiography) parameters related to HAPH. The hemodynamic measurements, such as right ventricular systolic pressure, a surrogate measure for pulmonary arterial systolic pressure, and right ventricular contractility (RV- ± dP/dt), increases with hypoxia did not separate between Tmod3−/+ and control mice. Remarkably, there was a significant increase in the number of lung vascular branches and total length of pulmonary vascular branches (p 
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-27
    Description: Background To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency(MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner. Methods We studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up were performed. Results Fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers(aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. Conclusion Fibers with cracks, aRRFs and diffuse decreased SDH activity distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-27
    Description: The form of Charcot–Marie-Tooth type 4B (CMT4B) disease caused by mutations in myotubularin-related 5 (MTMR5; also called SET Binding Factor 1; SBF1) shows a spectrum of axonal and demyelinating nerve phenotypes. This contrasts with the CMT4B subtypes caused by MTMR2 or MTMR13 (SBF2) mutations, which are characterized by myelin outfoldings and classic demyelination. Thus, it is unclear whether MTMR5 plays an analogous or distinct role from that of its homolog, MTMR13, in the peripheral nervous system (PNS). MTMR5 and MTMR13 are pseudophosphatases predicted to regulate endosomal trafficking by activating Rab GTPases and binding to the phosphoinositide 3-phosphatase MTMR2. In the mouse PNS, Mtmr2 was required to maintain wild type levels of Mtmr5 and Mtmr13, suggesting that these factors function in discrete protein complexes. Genetic elimination of both Mtmr5 and Mtmr13 in mice led to perinatal lethality, indicating that the two proteins have partially redundant functions during embryogenesis. Loss of Mtmr5 in mice did not cause CMT4B-like myelin outfoldings. However, adult Mtmr5−/− mouse nerves contained fewer myelinated axons than control nerves, likely as a result of axon radial sorting defects. Consistently, Mtmr5 levels were highest during axon radial sorting and fell sharply after postnatal day seven. Our findings suggest that Mtmr5 and Mtmr13 ensure proper axon radial sorting and Schwann cell myelination, respectively, perhaps through their direct interactions with Mtmr2. This study enhances our understanding of the non-redundant roles of the endosomal regulators MTMR5 and MTMR13 during normal peripheral nerve development and disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-27
    Description: Introduction In the era of personalized medicine with more and more patient specific targeted therapies being used, we need reliable, dynamic, faster, and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis. Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial DNA mtDNA in metabolic regulation, aging, and disease development. Somatic mutations of the mitochondrial genome are also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the mtDNA, and thereby contributes to a range of pathophysiological alterations observed in complex diseases. Methods We performed an inverted mitochondrial genome wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify genetic variants associated with metabolite profiles. Because of the high coverage, next generation sequencing-based analysis of the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for identification of variants associated with the metabolome. Results The strongest association was found for mt715G 〉 A located in the MT-12SrRNA with the metabolite ratio C2/C10:1 (p-value = 6.82*10−09, β = 0.909). The second most significant mtSNV was found for mt3714A 〉 G located in the MT-ND1 with the metabolite ratio PC ae C42:5/PC ae C44:5 (p-value = 1.02*10−08, β = 3.631). A large number of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G 〉 A, located in the MT-ND4L gene. Conclusion These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of the significant metabolites found in this study have been previously related to complex diseases such as neurological disorders and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex diseases. Understanding the mechanisms that control human health and disease, in particular the role of genetic predispositions and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex disorders.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-23
    Description: Functional skin barrier requires sphingolipid homeostasis. 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In stratum corneum of both patients we identified hitherto unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed—shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-23
    Description: CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-30
    Description: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common subphenotype of non-syndromic orofacial clefts arising from genetic and/or environmental perturbations during embryonic development. We previously identified 2p24.2 as a risk locus associated with NSCL/P in the Chinese Han population, and MYCN is a candidate risk gene in this region. To understand the potential function of MYCN in craniofacial development, we generated Wnt1-Cre;Mycnflox/flox mice that exhibited cleft palate, microglossia and micrognathia, resembling the Pierre Robin sequence (PRS) in humans. Further analyses indicated that the cleft palate was secondary to the delayed elevation of palatal shelves caused by micrognathia. The micrognathia resulted from impaired chondrogenic differentiation in Merkel’s cartilage, which limited tongue development, leading to microglossia. In terms of mechanism, Mycn deficiency in cranial neural crest cells (CNCCs) downregulated Sox9 expression by inhibiting Wnt5a in a CNCC-derived chondrogenic lineage in Merkel’s cartilage. To investigate whether MYCN deficiency contributed to NSCL/P, we performed direct sequencing targeting all exons and exon–intron boundaries of MYCN in 104 multiplex families with Mendelian NSCL/P and identified a novel pathogenic variant in MYCN. Taken together, our data indicate that ablation of Mycn in mouse CNCCs could resemble PRS by suppressing the Wnt5a-Sox9 signaling pathway in Merkel’s cartilage and that mutations in MYCN may be novel potential causes of NSCL/P.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-30
    Description: Epidemic obesity is the most important risk factor for prediabetes and type 2 diabetes (T2D) in youth as it is in adults. Obesity shares pathophysiological mechanisms with T2D and is likely to share part of the genetic background. We aimed to test if weighted genetic risk scores (GRSs) for T2D, fasting glucose (FG) and fasting insulin (FI) predict glycaemic traits and if there is a causal relationship between obesity and impaired glucose metabolism in children and adolescents. Genotyping of 42 SNPs established by genome-wide association studies for T2D, FG and FI was performed in 1660 Italian youths aged between 2 and 19 years. We defined GRS for T2D, FG and FI and tested their effects on glycaemic traits, including FG, FI, indices of insulin resistance/beta cell function and body mass index (BMI). We evaluated causal relationships between obesity and FG/FI using one-sample Mendelian randomization analyses in both directions. GRS-FG was associated with FG (beta = 0.075 mmol/l, SE = 0.011, P = 1.58 × 10−11) and beta cell function (beta = −0.041, SE = 0.0090 P = 5.13 × 10−6). GRS-T2D also demonstrated an association with beta cell function (beta = −0.020, SE = 0.021 P = 0.030). We detected a causal effect of increased BMI on levels of FI in Italian youths (beta = 0.31 ln (pmol/l), 95%CI [0.078, 0.54], P = 0.0085), while there was no effect of FG/FI levels on BMI. Our results demonstrate that the glycaemic and T2D risk genetic variants contribute to higher FG and FI levels and decreased beta cell function in children and adolescents. The causal effects of adiposity on increased insulin resistance are detectable from childhood age.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...