ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Description / Table of Contents: In high-temperature geochemistry and cosmochemistry, highly siderophile and strongly chalophile elements can be defined as strongly preferring metal or sulfide, respectively, relative to silicate or oxide phases. The highly siderophile elements (HSE) comprise Re, Os, Ir, Ru, Pt, Rh, Pd, and Au and are defined by their extreme partitioning (〉104) into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The HSE are highly refractory, as indicated by their high melting and condensation temperatures and were therefore concentrated in early accreted nebular materials. Within the HSE are the platinum-group elements (PGE), which include the six elements lying in the d-block of the periodic table (groups 8, 9, and 10, periods 5 and 6), i.e., Os, Ir, Ru, Pt, Rh and Pd. These six elements tend to exist in the metallic state, or bond with chalcogens (S, Se, Te) or pnictogens (P, As, Sb, Bi). Rhenium and Au do not necessarily behave as coherently as the PGE, due to their differing electronegativity and oxidation states. For these reasons, a clear definition between the discussion of the PGE and the HSE (PGE, Re and Au) exists in the literature, especially in economic geology, industrial, or bio-medical studies. The strongly chalcophile elements can be considered to include S, Se, and Te. These three elements are distinguished from other chalcophile elements, such as Cd or Pb, because, like the HSE, they are all in very low abundances in the bulk silicate Earth. By contrast with the HSE, S, Se, and Te all have far lower melting and condensation temperatures, classifying them as highly volatile elements. Moreover, these elements are not equally distributed within chondrite meteorite groups. Since their initial distribution in the Solar nebula, planetary formation and differentiation process have led to large fractionations of the HSE and strongly chalcophile elements, producing a range of absolute and relative inter-element fractionations. The chemical properties of the HSE, that set them apart from any other elements in the periodic table, have made them geochemical tracers par excellence. As tracers of key processes, the HSE have found application in virtually all areas of the physical Earth sciences. These elements have been used to inform on the nucleosynthetic sources and formation of the Solar System, planetary differentiation, late accretion addition of elements to planets, core-formation and possible core-mantle interaction, crust-mantle partitioning, volcanic processes and outgassing, formation of magmatic, hydrothermal and epithermal ore deposits, ocean circulation, climate-related events, weathering, and biogeochemical cycling. More recently, studies of strongly chalcophile elements are finding a similar range of applications. Their utility lies in the fact that these elements will behave as siderophile or strongly chalcophile elements under reducing conditions, but will also behave as lithophile or atmophile elements under oxidizing conditions, as experienced at the present day Earth’s surface. A key aspect of the HSE is that three long-lived, geologically useful decay systems exist with the HSE as parent (107Pd–107Ag), or parent–daughter isotopes (187Re–187Os and 190Pt–186Os). This volume is dedicated to some of the processes that can be investigated at high-temperatures in planets using the HSE and strongly chalcophile elements. While this volume is not dedicated to the practical applications of the HSE and strongly chalcophile elements, it would be remiss not to briefly discuss the importance of these elements in society. All of these elements have found important societal use, from the application of Au as a valued commodity in early societies, through to the present-day; the importance of S and Se in biological processes; the discovery and implementation of Pt, Pd, and subsequently other PGE to catalytic oxidation, and the importance of the anti-cancer drug cisplatin (cis-[Pt(NH3)2Cl2]) to anti-tumour treatments. The use of the PGE, most especially Pt, Pd and Rh, in the automotive industry to generate harmless gases has caused some potential collateral effects; the possible environmental impact and human health-risks from available PGE in the environment. An entire volume can (and should!) equally be written on the utility of the HSE and strongly chalcophile elements during low-temperature geochemistry. In this volume, a number of key areas are reviewed in the use of the HSE and strongly chalcophile elements to investigate fundamental processes in high-temperature geochemistry and cosmochemistry. It is divided into five parts. The first part of the volume concerns measurements and experiments. Chapter 1, by Brenan et al. (2016), provides an comprehensive overview of experimental constraints applied to understanding HSE partitioning under a range of conditions, including: liquid metal–solid metal; metal– silicate; silicate–melt; monosulfide solid solution (MSS)–sulfide melt; sulfide melt–silicate melt; silicate melt–aqueous fluid–vapor. Chapter 2, by Meisel and Horan (2016) provides a summary of analytical methods, issues specifically associated with measurement of the HSE, and a review of important reference materials. The second part of the volume concerns the cosmochemical importance of the HSE and strongly chalcophile elements. In their assessment of nucleosynthetic isotopic variations of siderophile and chalcophile elements in Solar System materials, Yokoyama and Walker (2016, Chapter 3) discuss some of the fundamentals of stellar nucleosynthesis, the evidence for nucleosynthetic anomalies in pre-Solar grains, bulk meteorites and individual components of chondrites, ultimately providing a synthesis on the different information afforded by nucleosynthetic anomalies of Ru, Mo, Os, and other siderophile and chalcophile elements. Chapter 4 concerns the HSE in terrestrial bodies, including the Earth, Moon, Mars and asteroidal bodies for which we have materials as meteorites. Day et al. (2016) provide a summary of HSE abundance and 187Os/188Os variations in the range of materials available and a synthesis of initial Solar System composition, evidence for late accretion, and estimates of current planetary mantle composition. The third part of the volume concerns our understanding of the Earth’s mantle from direct study of mantle materials. In Chapter 5, Aulbach et al. (2016) discuss the importance and challenges associated with understanding HSE in the cratonic mantle, providing new HSE alloy solubility modelling for melt extraction at pressures, temperatures, fO2 and fS2 pertaining to conditions of cratonic mantle lithosphere formation. Luguet and Reisberg (2016) provide similar constraints on non-cratonic mantle in Chapter 6, emphasizing the importance of combined geochemical and petrological approaches to fully understand the histories of mantle peridotites. The information derived from studies of Alpine peridotites, obducted ophiolites and oceanic abyssal peridotites are reviewed in Chapter 7 by Becker and Dale (2016). The fourth part of the volume focusses on important minerals present in the mantle and crust. Chapter 8 provides a broad overview of mantle chalcophiles. In this chapter, Lorand et al. (2016) emphasise that chalcophile and siderophile elements are important tracers that can be strongly affected by host minerals as a function of sulfur-saturation, redox conditions, pressure, temperature, fugacity of sulfur, and silicate melt compositions. Along a similar theme in Chapter 9, O’Driscoll and Gonzalez-Jimenez (2016) provide an overview of platinum-group minerals (PGM), pointing out that, where present PGM dominate the HSE budget of silicate rocks. Finally in this section, Harvey et al. (2016) examine the importance of Re–Os–Pb isotope dating methods of sulfides for improving our understanding of mantle processes (Chapter 10). The fifth and final part of the volume considers the important of the HSE for studying volcanic and magmatic processes. In Chapter 11, Gannoun et al. (2016) provide a synthesis of the most abundant forms of volcanism currently operating on Earth, including mid-ocean ridge basalts, volcanism unassociated with plate boundaries, and subduction zone magmatism. The volume is completed in Chapter 12 by Barnes and Ripley (2016), by an appraisal of the obvious importance of magmatic HSE ore formation in Earth’s crust.
    Pages: Online-Ressource (xxiii, 774 Seiten)
    ISBN: 9780939950973
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-01
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5°C) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5°C; reduced pH/stable 7.67, 16.6°C; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4°C; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4°C). After three months, we examined the composition (wt. % and concentration of Ca and Mg), ultrastructure (cuticle and thickness of exocuticle ), and mechanical properties (hardness and stiffness). Layer thickness (µm) and wt. % mineralization were determined using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Concentration of elements (µmol/mg sample) was measured using inductively-coupled x-ray spectrometry (ICP-MS), while material properties (GPa) were measured using a nanoindenter with a Berkovitch diamond tip.
    Keywords: California Current Ecosystem; crustacean; La_Jolla_trap_2016; Laboratory experiment; Ocean acidification; off Southern California; Trap, baited; TRAPB
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-01
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5℃) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5℃; reduced pH/stable 7.67, 16.6℃; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4℃; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4℃). After three months, we examined the composition (wt. % and concentration of Ca and Mg), ultrastructure (cuticle and thickness of exocuticle ), and mechanical properties (hardness and stiffness). Layer thickness (µm) and wt. % mineralization were determined using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Concentration of elements (µmol/mg sample) was measured using inductively-coupled x-ray spectrometry (ICP-MS), while material properties (GPa) were measured using a nanoindenter with a Berkovitch diamond tip. The metadata file describes headers, units, methods, etc in each data file. CSV files are data files for separate measurements and will run with R code stored at GitHub to reproduce analyses and figures.
    Keywords: Binary Object; California Current Ecosystem; crustacean; La_Jolla_trap_2016; Laboratory experiment; Ocean acidification; off Southern California; Trap, baited; TRAPB
    Type: Dataset
    Format: text/tab-separated-values, 5 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-18
    Description: We examined five exoskeletal structures in the California spiny lobster, Panulirus interruptus, to better understand both the extent of exoskeleton variation within a single crustacean species and the relationship between morphology and function. The five structures were the carapace, antenna, rostral horn, mandible, and abdominal segment, each of which provides predator defenses to different degrees, potentially leading to differentiation in structure construction. Here, we characterized and compared the mineralization (wt. % and concentration of Ca and Mg), ultrastructure (cuticle layer thickness), and mechanical properties (hardness and stiffness). Layer thickness (µm) and wt. % mineralization were determined using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Concentration of elements (µmol/mg sample) was measured using inductively-coupled x-ray spectrometry (ICP-MS), while material properties (GPa) were measured using a nanoindenter with a Berkovitch diamond tip.
    Keywords: biomechanics; crustacea; cuticle; elemental composition; File content; File format; File name; File size; functional morphology; predator defense; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 45 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-26
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5°C) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5°C; reduced pH/stable 7.67, 16.6°C; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4°C; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4°C). After three months, inductively-coupled x-ray spectrometry (ICP-MS) was performed on cuticle samples at the Scripps Isotope Geochemistry Laboratory (SIGL) for a precise quantification of elements (µmol/mg sample). The carapace spine was air-dried and then trimmed so only the spine remained with no setae, and the abdominal segment was cut as a 1 x 1 cm² from the center of the second abdominal segment and air-dried. Samples were weighed and placed in Teflon vials for digestion with 0.5 ml of concentrated Teflon-distilled (TD) nitric acid (HNO3) on a hotplate at 100°C for 〉24 h. Samples were dried down and diluted by a factor of 4000 with 2% TD HNO3 before being transferred to pre-cleaned centrifuge tubes for analysis. Samples were doped with an indium solution to monitor instrumental drift. Measurements were done using a ThermoScientific iCAPq c ICP-MS (Thermo Fisher Scientific GmbH, Bremen, Germany) in standard mode. Masses of Mg and Ca were sequentially measured for 30 ratios, resulting in internal precision of 〈2% (2 s.d.). Elements were corrected for total mole fraction. Total procedural blanks represented 〈0.3% of the measurement for Mg and Ca. Raw data were corrected offline for instrument background and drift. Samples were bracketed by internal standards of crab carapace (n=3), which allowed for calculation of absolute values as well as weighted averages of isotopes from natural abundance. The standards yielded external precision of 2% and 3% for Mg and Ca, respectively.
    Keywords: Aluminium-27; Barium-137; Body region; Boron-10; Calcium; Calcium-43; Calcium-48; California Current Ecosystem; Chromium-52; Copper-65; crustacean; Identification; Iron-54; Iron-57; La_Jolla_trap_2016; Laboratory experiment; Lead-207(I); Lead-207(II); Lead-207(III); Lead-207(IV); Lead-208; Magnesium; Magnesium-25; Magnesium-26; Ocean acidification; off Southern California; pH, standard deviation; Phosphorus-31; S-(Q)-ICP-MS measurements, Thermo Scientific iCAP-Qc ICP-MS; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Status; Strontium-86; Tin-119; Titanium-48; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type of study; Uranium-238; Weighted average; Zinc-66
    Type: Dataset
    Format: text/tab-separated-values, 3776 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-26
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5°C) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5°C; reduced pH/stable 7.67, 16.6°C; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4°C; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4°C). After three months, we examined the relative atomic weight composition (weight %/atomic weight of element) of the carapace using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Each cuticle sample was rinsed with deionized water and allowed to air dry. Samples were then freeze-fractured with liquid nitrogen and critical-point dried (AutoSamdri 815 Series A, Tousimis, Rockville, MD, USA) before being mounted on a 90-degree SEM tip and sputter-coated with iridium. Cross-sections of these cuticle samples were examined with ultra-high-resolution scanning electron microscopy under high vacuum (XL30 SFEG with Sirion column and Apreo LoVac, FEI, Hillsboro, OR, USA with Oxford X-MAX 80 EDS detector, Concord, MA, USA) at 10 or 20 kV. One to two samples each of the carapace spine and antenna from individual lobsters were imaged. EDX was measured with with two machines (XL30 SFEG with Sirion column and Apreo LoVac, FEI, Hillsboro, OR, USA with Oxford X-MAX 80 EDS detector, Concord, MA, USA) at 20 kV acceleration voltage. Spectra were taken on the cross-sectional surface of the exocuticle and the endocuticle layers of the carapace spine and antenna base and the core and outer ring of the horn tip.
    Keywords: Aluminium; Body region; Calcium; California Current Ecosystem; Carbon; Chlorine; crustacean; Cuticle layer; Device type; Identification; La_Jolla_trap_2016; Laboratory experiment; Magnesium; Nitrogen; Ocean acidification; off Southern California; Oxygen; pH, standard deviation; Phosphorus; Quality control; Scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX); Silicon; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Status; Sulfur; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 9733 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-26
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5°C) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5°C; reduced pH/stable 7.67, 16.6°C; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4°C; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4°C). After three months, we examined the atomic weight composition (%) of the carapace using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Each cuticle sample was rinsed with deionized water and allowed to air dry. Samples were then freeze-fractured with liquid nitrogen and critical-point dried (AutoSamdri 815 Series A, Tousimis, Rockville, MD, USA) before being mounted on a 90-degree SEM tip and sputter-coated with iridium. Cross-sections of these cuticle samples were examined with ultra-high-resolution scanning electron microscopy under high vacuum (XL30 SFEG with Sirion column and Apreo LoVac, FEI, Hillsboro, OR, USA with Oxford X-MAX 80 EDS detector, Concord, MA, USA) at 10 or 20 kV. One to two samples each of the carapace spine and antenna from individual lobsters were imaged. EDX was measured with with two machines (XL30 SFEG with Sirion column and Apreo LoVac, FEI, Hillsboro, OR, USA with Oxford X-MAX 80 EDS detector, Concord, MA, USA) at 20 kV acceleration voltage. Spectra were taken on the cross-sectional surface of the exocuticle and the endocuticle layers of the carapace spine and antenna base and the core and outer ring of the horn tip.
    Keywords: Aluminium; Body region; Calcium; California Current Ecosystem; Carbon; Chlorine; crustacean; Cuticle layer; Device type; Identification; La_Jolla_trap_2016; Laboratory experiment; Magnesium; Nitrogen; Ocean acidification; off Southern California; Oxygen; pH, standard deviation; Phosphorus; Quality control; Scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX); Silicon; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Status; Sulfur; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1876 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-26
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5°C) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5°C; reduced pH/stable 7.67, 16.6°C; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4°C; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4°C). After three months, we examined cuticle layer thickness (µm) using a scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX). Each cuticle sample was rinsed with deionized water and allowed to air dry. Samples were then freeze-fractured with liquid nitrogen and critical-point dried (AutoSamdri 815 Series A, Tousimis, Rockville, MD, USA) before being mounted on a 90-degree SEM tip and sputter-coated with iridium. Cross-sections of these cuticle samples were examined with ultra-high-resolution scanning electron microscopy under high vacuum (XL30 SFEG with Sirion column and Apreo LoVac, FEI, Hillsboro, OR, USA with Oxford X-MAX 80 EDS detector, Concord, MA, USA) at 10 or 20 kV. One to two samples each of the carapace spine and antenna from individual lobsters were imaged and measured for the total cuticle thickness (epicuticle, exocuticle, and endocuticle), as well as thickness of the individual exo- and endocuticle layers.
    Keywords: Body region; California Current Ecosystem; crustacean; Cuticle layer; Distance; Identification; La_Jolla_trap_2016; Laboratory experiment; Ocean acidification; off Southern California; pH, standard deviation; Quality control; Scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX); Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Status; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type of study; Validation flag/comment
    Type: Dataset
    Format: text/tab-separated-values, 48882 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-26
    Description: We examined the response of multiple structures used for predator defense in the California spiny lobster, Panulirus interruptus, to a series of ocean acidification-like conditions. Lobsters were collected by modified commercial traps offshore La Jolla, CA (in the area around 32.8534193, -117.2687516) in October 2016 and held at ambient conditions (pH 7.97, 16.5℃) before exposure to stable or diurnally fluctuating reduced pH conditions established by bubbling CO2 and as measured using best practices (ambient pH/stable, 7.97, 16.5℃; reduced pH/stable 7.67, 16.6℃; reduced pH with low fluctuations, 7.67 ± 0.05, 16.4℃; reduced pH with high fluctuations, 7.67 ± 0.10, 16.4℃). After three months, the carapace spine and rostral horn tip were tested for hardness and stiffness using a nanoindentation materials testing machine (Nano Hardness Tester, Nanovea, Irvine, CA, USA) equipped with a Berkovich tip. Fresh samples (〈12 hours, except for two samples tested within 24 hours) were kept hydrated in seawater until testing. Samples were secured to an aluminum block with cyanoacrylate glue such that the outer surface was facing up. Indentations were performed by applying a load of 40 mN to the outer surface of the sample at loading and unloading rates of 80 mN/min with a 30 sec hold for creep. At least three indents were taken per sample.
    Keywords: Body region; California Current Ecosystem; Comment; crustacean; Hardness; Identification; La_Jolla_trap_2016; Laboratory experiment; Nanoindentation (Nano Hardness Tester, Nanovea, Irvine, CA, USA); Ocean acidification; off Southern California; pH, standard deviation; Run Number; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Status; Stiffness; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type of study; Validation flag/comment
    Type: Dataset
    Format: text/tab-separated-values, 4480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobsters' environment. Here, we tested the effects of OA-like conditions on the mechanical integrity of selected exoskeletal defenses of juvenile California spiny lobster, Panulirus interruptus. Young spiny lobsters reside in kelp forests with dynamic carbonate chemistry due to local metabolism and photosynthesis as well as seasonal upwelling, yielding daily and seasonal fluctuations in pH. Lobsters were exposed to a series of stable and diurnally fluctuating reduced pH conditions for three months (ambient pH/stable, 7.97; reduced pH/stable 7.67; reduced pH with low fluctuations, 7.67 ± 0.05; reduced pH with high fluctuations, 7.67 ± 0.10), after which we examined the intermolt composition (Ca and Mg content), ultrastructure (cuticle and layer thickness), and mechanical properties (hardness and stiffness) of selected exoskeletal predator defenses. Cuticle ultrastructure was consistently robust to pH conditions, while mineralization and mechanical properties were variable. Notably, the carapace was less mineralized under both reduced pH treatments with fluctuations, but with no effect on material properties, and the rostral horn had lower hardness in reduced/high fluctuating conditions without a corresponding difference in mineralization. Antennal flexural stiffness was lower in reduced, stable pH conditions compared to the reduced pH treatment with high fluctuations and not correlated with changes in cuticle structure or mineralization. These results demonstrate a complex relationship between mineralization and mechanical properties of the exoskeleton under changing ocean chemistry, and that fluctuating reduced pH conditions can induce responses not observed under the stable reduced pH conditions often used in OA research. Furthermore, this study shows that some juvenile California spiny lobster exoskeletal defenses are responsive to changes in ocean carbonate chemistry, even during the intermolt period, in ways that can potentially increase susceptibility to predation among this critical life stage.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aluminium; Aluminium-27; Animalia; Aragonite saturation state; Arthropoda; Barium-137; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Body region; Boron-10; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Calcium-43; Calcium-48; Calculated using seacarb after Nisumaa et al. (2010); Carbon; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorine; Chromium-52; Coast and continental shelf; Comment; Copper-65; Cuticle layer; Device type; Distance; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Identification; Iron-54; Iron-57; La_Jolla_trap_2016; Laboratory experiment; Lead-207(I); Lead-207(II); Lead-207(III); Lead-207(IV); Lead-208; Magnesium; Magnesium-25; Magnesium-26; Nanoindentation (Nano Hardness Tester, Nanovea, Irvine, CA, USA); Nitrogen; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; off Southern California; Other; Other studied parameter or process; Oxygen; Panulirus interruptus; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Phosphorus; Phosphorus-31; Quality control; Range; Replicates; Run Number; S-(Q)-ICP-MS measurements, Thermo Scientific iCAP-Qc ICP-MS; Salinity; Salinity, standard deviation; Scanning electron microscope (SEM) equipped with electron-dispersive x-ray spectroscopy (EDX); Silicon; Single species; Sodium; Species, unique identification; Specimen identification; Standard deviation; Status; Stiffness; Strontium-86; Sulfur; Temperate; Temperature, water; Temperature, water, standard deviation; Tin-119; Titanium-48; Trap, baited; TRAPB; Treatment; Treatment: pH; Treatment: temperature; Type; Uranium-238; Validation flag/comment; Weighted average; Zinc-66
    Type: Dataset
    Format: text/tab-separated-values, 253607 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...