ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Description / Table of Contents: There is much interest in gas hydrates in relation to their potential role as an important driver for climate change and as a major new energy source; however, many questions remain, not least the size of the global hydrate budget. Much of the current uncertainty centres on how hydrates are physically stored in sediments at a range of scales. This volume details advances in our understanding of sediment-hosted hydrates, and contains papers covering a range of studies of real and artificial sediments containing both methane hydrates and CO2 hydrates. The papers include an examination of the techniques used to locate, sample and characterize hydrates from natural, methane-rich systems, so as to understand them better. Other contributions consider the nature and stability of synthetic hydrates formed in the laboratory, which in turn improve our ability to make accurate predictive models.
    Pages: Online-Ressource (VI, 192 Seiten)
    ISBN: 9781862392793
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Recently developed effective stress-controlled geophysical property models are used in passive-margin slope instability analyses including simulated earthquake motion. The pressure–temperature (P–T) history of sediment-hosted gas hydrate may significantly alter the geophysical property profile of the sediment column (e.g. metastable cement or increased pore pressures). This can result in significant amplification of earthquake ground motion, and thus seabed instability, where hydrates are present. Published studies suggest destabilization of these high-pressure/low-temperature sediment-hosted hydrates could trigger catastrophic slope failures with consequent liberation of ‘greenhouse’ gases and significant effects on global climate. To provide improved ground models for slope instability analyses we are investigating the influence of P–T history on hydrate distribution in sediments through the development of laboratory techniques to enable geophysical quantification of hydrate morphology and fabric on hydrate stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-27
    Description: The sequestration of CO2 in the deep geosphere is one potential method for reducing anthropogenic emissions to the atmosphere without necessarily incurring a significant change in our energy-producing technologies. Containment of CO2 as a liquid and an associated hydrate phase, under cool conditions, offers an alternative underground storage approach compared with conventional supercritical CO2 storage at higher temperatures. We briefly describe conventional approaches to underground storage, review possible approaches for using CO2 hydrate in CO2 storage generally, and comment on the important role CO2 hydrate could play in underground storage. Cool underground storage appears to offer certain advantages in terms of physical, chemical and mineralogical processes, which may usefully enhance trapping of the stored CO2. This approach also appears to be potentially applicable to large areas of sub-seabed sediments offshore Western Europe.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 319: 1-9.
    Publication Date: 2009-07-27
    Description: In the public's imagination, hydrates are seen as either a potential new source of energy to be exploited as the world uses up its reserves of oil and gas or as a major environmental hazard. Scientists, however, have expressed great uncertainty as to the global volume of hydrates and have reached little agreement on how they might be exploited. Both of these uncertainties can be reduced by a better understanding of how hydrates are held within sediments. There are conflicting ideas as to whether hydrates are disseminated within selected lithologies or trapped within fractures comparable to mineral lodes. To resolve this, hydrates have to be examined at all scales ranging from using seismics to microscopic studies. Their position within sediments also influences the stability of methane hydrate in responding to pressure and temperature and how the released gas might transfer to the ocean, atmosphere, or to a transport mechanism for recovery. These results also run parallel with the studies of carbon dioxide hydrate, which is being considered as a potential sequestion medium.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-08
    Description: The sequestration of CO2 in the deep geosphere is one potential method for reducing anthropogenic emissions to the atmosphere without a drastic change in our energy-producing technologies. Immediately after injection, the CO2 will be stored as a free phase within the host rock. Over time it will dissolve into the local formation water and initiate a variety of geochemical reactions. Some of these reactions could be beneficial, helping to chemically contain or trap' the CO2 as dissolved species and by the formation of new carbonate minerals; others may be deleterious, and actually aid the migration of CO2. It will be important to understand the overall impact of these competing processes. However, these processes will also be dependent upon the structure, mineralogy and hydrogeology of the specific lithologies concerned and the chemical stability of the engineered features (principally, the cement and steel components in the well completions). Therefore, individual storage operations will have to take account of local geological, fluid chemical and hydrogeological conditions. The aim of this paper is to review some of the possible chemical reactions that might occur once CO2 is injected underground, and to highlight their possible impacts on long-term CO2 storage.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 319: 81-91.
    Publication Date: 2009-07-27
    Description: One practical method to reduce environmentally damaging greenhouse gas emissions is through the geological storage of carbon dioxide. Deep, warm storage of carbon dioxide is currently taking place at Sleipner, North Sea and Weyburn, Canada. It is, however, also possible to store carbon dioxide as a liquid and hydrate in cool, sub-seabed sediments. Offshore north and west of Scotland seafloor pressures and temperatures are suitable for hydrate formation. In addition to the possibility of natural methane hydrate being present in this region, conditions may also be favourable for carbon dioxide storage as a liquid and hydrate. A computer program has been developed to calculate the depth to the base of the carbon dioxide and methane hydrate stability zones in two offshore regions: the Faeroe-Shetland Channel and the northern Rockall Trough. Results predict that methane hydrate remains stable to a maximum depth of 650 m below the seabed in the Faeroe-Shetland Channel, and 600 m below the seabed in the northern Rockall Trough; the carbon dioxide hydrate stability zone extends below the seabed to a depth of 345 and 280 m, respectively. No physical evidence for the existence of natural hydrate in these regions has been confirmed. Suitable conditions for carbon dioxide storage as a liquid and hydrate exist, and should this storage method be developed further, a more refined program and greater offshore investigations to improve data sets would be necessary to scope the full potential.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-24
    Description: A UK repository concept currently under consideration for the disposal of intermediate-level radioactive waste and some low-level waste not suitable for surface disposal involves using large quantities of cementitious materials for construction, grouting, waste containers, waste isolation matrix and buffer/backfill. CO 2 generated from the degradation of organic material in the waste will result in cement carbonation and associated mineralogical changes. Hydraulic and gas permeability tests were performed on Nirex Reference Vault Backfill (NRVB) cement at 40 °C and either 4 or 8 MPa. Carbonation reactions using CO 2 gas halved the permeability of the NRVB under simulated repository conditions. A greater decrease in permeability (by three orders of magnitude) was found during carbonation using dissolved CO 2 . Mineralogical changes were found to occur throughout the cement as a result of the reaction with CO 2 . However, a narrow zone along the leading edge of a migrating reaction front was associated with the greatest decrease in porosity. Fluid pressures increased slightly due to permeability reductions but fluid flow still continued (albeit at a lower rate) preventing the build-up of overly high pressures. Overall, the observed reductions in permeability could be beneficial in that they may help reduce the potential for fluid flow and radionuclide migration. However, continued carbonation could lead to potential issues with regards to gas pressure build-up.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2016-10-01
    Description: A series of long-term laboratory experiments was started in 1995 to investigate longer-term dissolution/ precipitation reactions that may occur in the alkaline disturbed zone surrounding a cementitious repository for radioactive waste. They consist of samples of UK basement rock reacting with either Na-K-Ca-OH water ('young' cement porewater) or Ca-OH water ('evolved' cement porewater) at 70°C. This paper summarizes results of reactions occurring over the first 15 months. Experiments of both fluid types showed many similar features, though primary mineral dissolution and secondary mineral precipitation were more extensive in the experiments involving Na-K-Ca (younger) cement porefluids compared to more evolved (Ca-rich) cement porefluids. Dissolution of dolomite, and to a lesser extent silicates (probably K-feldspar, but also possibly mica) occurred relatively rapidly at 70°C. Dolomite dissolution may have been a key factor in reducing pH values, and may be a key mineral in controlling the extent of alkaline disturbed zones. Dissolution was followed by precipitation of brucite close to dolomite grains, at least two generations of C-S-H phases (which may have contained variable amounts of K, Al and Mg); overgrowths of calcite; small crystals of hydroxyapophyllite; and elongate crystals of celestite. Though hydroxyapophyllite was observed (a phase commonly associated with zeolites), there was no evidence for the formation of zeolites in the experiments. Fluid chemical changes track the mineralogical changes, with C-S-H phases being a major control on fluid chemistry. In the 'young' porewater experiments there were decreases in pH, and K, Ca and Mg concentrations, together with transitory increases in SiO2concentrations. In the 'evolved' porewater experiments there were decreases in pH, Mg, Ca and Sr concentrations, together with small increases in K and SiO2concentrations. A number of experiments are still running, and will be sampled in coming years.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-01-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...