ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Description / Table of Contents: The continental crust is our archive of Earth history, and the store of many natural resources; however, many key questions about its formation and evolution remain debated and unresolved: - What processes are involved in the formation, differentiation and evolution of continental crust, and how have these changed throughout Earth history? - How are plate tectonics, the supercontinent cycle and mantle cooling linked with crustal evolution? - What are the rates of generation and destruction of the continental crust through time? - How representative is the preserved geological record? A range of approaches are used to address these questions, including field-based studies, petrology and geochemistry, geophysical methods, palaeomagnetism, whole-rock and accessory-phase isotope chemistry and geochronology. Case studies range from the Eoarchaean to Phanerozoic, and cover many different cratons and orogenic belts from across the continents.
    Pages: Online-Ressource (362 Seiten)
    ISBN: 9781862393752
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-30
    Description: Constraining the timing of brittle faulting is critical in understanding crustal deformation and fluid flow, but many regional-scale fault systems lack readily available techniques to provide absolute chronological information. Calcite mineralization occurs in crustal faults in many geological settings and can be suitable for U-Pb geochronology. This application has remained underutilized because traditional bulk dissolution techniques require uncommonly high U concentration. Because U and Pb are distributed heterogeneously throughout calcite crystals, high-spatial-resolution sampling techniques can target domains with high U and variable U/Pb ratios. Here we present a novel application of in-situ laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to basaltic fault rock geochronology in the Faroe Islands, northeast Atlantic margin. Faults that are kinematically linked to deformation associated with continental break-up were targeted. Acquired ages for fault events range from mid-Eocene to mid-Miocene and are therefore consistently younger than the regional early Eocene onset of ocean spreading, highlighting protracted brittle deformation within the newly developed continental margin. Calcite geochronology from LA-ICP-MS U-Pb analysis represents an important and novel method to constrain the absolute timing of fault and fluid-flow events.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-11
    Description: Convergent continental margins are the primary host of both growth and loss of continental crust. Continental growth largely occurs via subduction-driven magmatism, whereas continental loss largely occurs via subduction erosion and sediment subduction. Because the latter typically involves partial recycling into magmas, both growth and loss of continental crust can be represented in the magmatic record. The degree of crustal recycling can be estimated from the initial Hf isotope signatures in both magmatic and detrital zircon grains. Recent insights into the geodynamic evolution of the Peruvian margin, in combination with a new dataset of Hf isotopic data on zircon from the Carboniferous to Early Cretaceous, enable us to (1) compare the geodynamic history of the southern Peruvian margin with its Hf isotopic evolution, and (2) quantify the crustal growth between 500 and 135 Ma. The data exhibit a correlation with trends in isotope composition v. time and reflect the dominantly extensional regime that prevailed from the onset of subduction from 530 Ma to c. 135 Ma. This study demonstrates that the Peruvian margin experienced continental growth with juvenile input to arc magmatism of 30–45% on average, and illustrates the use of U–Pb and Hf isotopes in zircon as a tool to trace episodes of crustal growth through time. Supplementary material: Hf istopic analyses on zircon (A1 and A2) and new U–Pb zircon ages (A3) are available at http://www.geolsoc.org.uk/SUP18661 .
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-29
    Description: The Gongga Shan batholith of eastern Tibet, previously documented as a ca. 32–12.8 Ma granite pluton, shows some of the youngest U-Pb granite crystallization ages recorded from the Tibetan Plateau, with major implications for the tectonothermal history of the region. Field observations indicate that the batholith is composite; some localities show at least seven crosscutting phases of granitoids that range in composition from diorite to leucocratic monzogranite. In this study we present U-Pb ages of zircon and allanite dated by laser ablation–inductively coupled plasma–mass spectrometry on seven samples, to further investigate the chronology of the batholith. The age data constrain two striking tectonic-plutonic events: a complex Triassic–Jurassic (ca. 215–159 Ma) record of biotite-hornblende granodiorite, K-feldspar megacrystic granite and leucogranitic plutonism, and a Miocene (ca. 14–5 Ma) record of monzonite-leucogranite emplacement. The former age range is attributed to widespread Indosinian tectonism, related to Paleo-Tethyan subduction zone magmatism along the western Yangtze block of south China. The younger component may be related to localized partial melting (muscovite dehydration) of thickened Triassic flysch-type sediments in the Songpan-Ganze terrane, and are among the youngest crustal melt granites exposed on the Tibetan Plateau. Zircon and allanite ages reflect multiple crustal remelting events; the youngest, ca. 5 Ma, resulted in dissolution and crystallization of zircons and growth and/or resetting of allanites. The young garnet, muscovite, and biotite leucogranites occur mainly in the central part of the batholith and adjacent to the eastern margin of the batholith at Kangding, where they are cut by the left-lateral Xianshui-he fault. The Xianshui-he fault is the most seismically active strike-slip fault in Tibet and is thought to record the eastward extrusion of the central part of the Tibetan Plateau. The fault obliquely cuts all granites of the Gongga Shan massif and has a major transpressional component in the Kangding-Moxi region. The course of the Xianshui Jiang river is offset by ~62 km along the Xianshui-he fault and in the Kangding area granites as young as ca. 5 Ma are cut by the fault. Our new geochronological data show that only a part of the Gongga Shan granite batholith is composed of young (Miocene) melt, and we surmise that as most of eastern Tibet is composed of Precambrian–Triassic Indosinian rocks, there is no geological evidence to support regional Cenozoic internal thickening or metamorphism and no evidence for eastward-directed lower crustal flow away from Tibet. We suggest that underthrusting of Indian lower crust north as far as the Xianshui-he fault resulted in Cenozoic uplift of the eastern plateau.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-22
    Description: It is widely thought that continental chemical weathering provides the key feedback that prevents large fluctuations in atmospheric CO 2 , and hence surface temperature, on geological time scales. However, low-temperature alteration of the upper oceanic crust in off-axis hydrothermal systems provides an alternative feedback mechanism. Testing the latter hypothesis requires understanding the timing of carbonate mineral formation within the oceanic crust. Here we report the first radiometric age determinations for calcite formed in the upper oceanic crust in eight locations globally via in-situ U-Pb laser ablation–inductively coupled plasma–mass spectrometry analysis. Carbonate formation occurs soon after crustal accretion, indicating that changes in global environmental conditions will be recorded in changing alteration characteristics of the upper oceanic crust. This adds support to the interpretation that large differences between the hydrothermal carbonate content of late Mesozoic and late Cenozoic oceanic crust record changes in global environmental conditions. In turn, this supports a model in which alteration of the upper oceanic crust in off-axis hydrothermal systems plays an important role in controlling ocean chemistry and the long-term carbon cycle.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-09
    Description: The strong resilience of the mineral zircon and its ability to host a wealth of isotopic information make it the best deep-time archive of Earth's continental crust. Zircon is found in most felsic igneous rocks, can be precisely dated and can fingerprint magmatic sources; thus, it has been widely used to document the formation and evolution of continental crust, from pluton- to global-scale. Here, we present a review of major contributions that zircon studies have made in terms of understanding key questions involving the formation of the continents. These include the conditions of continent formation on early Earth, the onset of plate tectonics and subduction, the rate of crustal growth through time and the governing balance of continental addition v. continental loss, and the role of preservation bias in the zircon record. Supplementary material: A compilation used in this study of previously published detrital zircon U-Pb-Hf isotope data are available at http://www.geolsoc.org.uk/SUP18791
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-25
    Description: The first U-Pb ages from a ca. 26–24 Ma pluton on Guadalcanal, in the intra-oceanic Solomon island arc (southwest Pacific Ocean), reveal Eocene- to Archean-aged zircon xenocrysts. Xenocryst populations at ca. 39–33 Ma and ca. 71–63 Ma correlate with previously obtained ages of supra-subduction magmatism within the arc. A ca. 96 Ma zircon population may be derived from Cretaceous ophiolite basement crust or region-wide continental rift-related magmatism. Xenocryst age populations alternate with periods of oceanic basin formation that fragmented the East Gondwana margin. Early Cretaceous to Archean zircon xenocryst ages imply continental origins and a cryptic source within the arc crust; they may have been introduced by Eocene interaction of a continental fragment with the arc, and concealed by ophiolite obduction. The data demonstrate that continentally derived zircons may be transported thousands of kilometers from their source and added to intra-oceanic arc magmas, a process likely facilitated by cyclical subduction zone advance and retreat. The findings highlight the continuum of arcs that occurs between continental and oceanic end members, and the caution with which zircons should be used to determine the provenance and setting of ancient arc terranes accreted to the continental crust.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-19
    Description: A global U-Pb and 18 O zircon database shows temporal changes in the magmatic record related to changes in the degree of crustal reworking. The 18 O composition of bulk sediment remains relatively constant through geologic time, with a mean value of 14.9. In contrast, the 18 O values in magmatic zircons vary from relatively low values averaging ~6 in the Archean to increasingly higher and scattered values defining a series of peaks and troughs in post-Archean data. The degree of crustal reworking increases at times of supercontinent assembly. Therefore we attribute the pattern of post-Archean 18 O values recorded by magmatic zircons to a significant increase in the incorporation of high 18 O sediment in response to enhanced crustal thickening and reworking associated with the onset of collisional tectonics, especially during formation of supercontinents.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-15
    Description: The continental crust is the primary archive of geological history, and is host to most of our natural resources. Thus, the following remain critical questions in Earth Science, and provide an underlying theme to all of the contributions within this volume: when, how and where did the continental crust form? How did it differentiate and evolve through time? How has it has been preserved in the geological record? This introductory review provides a background to these themes, and provides an outline of the contributions contained within this volume.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈p〉A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained.〈/p〉 〈p〉〈b〉Supplementary material:〈/b〉 Trace element concentrations and data, detailed analytical information, field photographs, chemical maps and thin section information are available at 〈a href="https://doi.org/10.6084/m9.figshare.c.4044323"〉https://doi.org/10.6084/m9.figshare.c.4044323〈/a〉〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...