ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: SR 90.0016(255)
    In: Mitteilungen aus dem Geologischen Institut der Eidgenössischen Technischen Hochschule und der Universität Zürich. N.F.
    Type of Medium: Series available for loan
    Pages: V, 203 S.
    Series Statement: Mitteilungen aus dem Geologischen Institut der Eidgenössischen Technischen Hochschule und der Universität Zürich N.F., 255
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 141 (1993), S. 287-323 
    ISSN: 1420-9136
    Keywords: Sonic velocity ; carbonates ; physical properties ; porosity ; diagenesis ; compaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Compressional and shear-wave velocities (V p andV s) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations. Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p andV s) with age or burial depth of the sediments so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks. At 8 MPa effective pressureV p ranges from 1700 to 6500 m/s, andV s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like “Gardner's Law” (V p-density) or the “time-average-equation” (V p-porosity) should be significantly modified towards higher velocities before being applied to carbonates. The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure. The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 34 (1987), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates.The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs.After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Core, logging and high-resolution seismic data from ODP Leg 166 were used to analyse deposits of the Neogene (Miocene–Lower Pliocene) Bahamian outer carbonate ramp. Ramp sediments are cyclic alternations of light- and dark-grey wackestones/packstones with interbedded calciturbidite packages and minor slumps. Cyclicity was driven by high-frequency sea-level changes. Light-grey layers containing shallow-water bioclasts were formed when the ramp exported material, whereas the dark-grey layers are dominantly pelagic. Calciturbidites are arranged into mounded lobes with feeder channels. Internal bedding of the lobes shows a north-directed shingling as a result of the asymmetrical growth of these bodies. Calciturbidite packages occur below and above sequence boundaries, indicating that turbidite shedding occurred during third-order sea-level highstands and lowstands. Highstand turbidites contain shallow-water components, such as green algal debris and epiphytic foraminifera, whereas lowstand turbidites are dominated by abraded bioclastic detritus. Gravity flow depocentres shifted from an outer ramp position during the early Miocene to a basin floor setting during the late Miocene to early Pliocene. This change was triggered by an intensification of the strength of bottom currents during the Tortonian, which was also responsible for shaping the convex morphology of the outer ramp. The Miocene and Lower Pliocene of the leeward flank of Great Bahama Bank provides an example of the poorly known depositional setting of the outer part of distally steepened carbonate ramps. The contrast between its sedimentary patterns and the well-known Upper Pliocene–Quaternary slope facies associations of the flat-topped Great Bahama Bank shows the strong control that the morphology of a carbonate platform exerts on the depositional architecture of the adjacent slope and base-of-slope successions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 44 (1997), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: An active oolitic sand wave was monitored for a period of 37 days in order to address the relationship between the direction and strength of tidal currents and the resultant geometry, and amount and direction of migration of bedforms in carbonate sands. The study area is situated in a tidal channel near Lee Stocking Island (Exumas, Bahamas) containing an estimated 5.5 to 6 × 105 m3 of mobile oolitic sand. Tidal ranges within the inlet are microtidal and the maximum current velocity at the studied site is 0.6 m s−1. At least 300–400 m3 of mostly oolitic sand are formed within, or brought into, the channel area every year. The tidal inlet is subdivided into an ocean-orientated segment, in which sand waves are shaped by both flood and ebb tides, and a platform-orientated segment, where sand waves are mainly shaped by flood tides. The studied sand wave lies on the platformward flood-tide dominated segment in a water depth of 3.5.4.5 m. During the 37 days of observation, the oolitic and bioclastic sand wave migrated 4 m in the direction of the dominant flood current. The increments of migration were directly related to the strength of the tide.During each tidal cycle, bedforms formed depending on the strength of the tidal current, tidal range and their location on the sand wave. During flood tides, a steep lee and a gentle stoss side formed and current ripples and small dunes developed on the crest of the sand wave, while the trough developed only ripples. The average lee slope of the sand wave is 24.2°, and therefore steeper than typical siliciclastic sand waves. During ebb tides, portions of the crest are eroded creating a convex upward ebb stoss side, covered with climbing cuspate and linguoid ripples and composite dunes. The area between the ebb-lee side and the trough is covered with fan systems, sinuous ripples and dunes.The migration of all bedforms deviated to a variable degree from the main current direction, reflecting complex flow patterns in the tidal inlet. Small bedforms displayed the largest deviation, migrating at an angle of up to 90° and more to the dominant current direction during spring tides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2011-02-01
    Description: The electrical resistivity log has proven to be a powerful tool for lithology discrimination, correlation, porosity evaluation, hydrocarbon indication, and calculation of water saturation. Carbonate rocks develop a variety of pore types that can span several orders of magnitude in size and complexity. A link between the electrical resistivity and the carbonate pore structure has been inferred, although no detailed understanding of this relationship exists. Seventy-one plugs from outcrops and boreholes of carbonates from five different areas and ages were measured for electrical resistivity properties and quantitatively analyzed for pore structure using digital image analysis from thin sections. The analysis shows that in addition to porosity, the combined effect of microporosity, pore network complexity, pore size of the macropores, and absolute number of pores are all influential for the flow of electric charge. Samples with small pores and an intricate pore network have a low cementation factor, whereas samples with large pores and a simple pore network have high values for cementation factor. Samples with separate-vug porosity have the highest cementation factor. The results reveal that (1) in carbonate rocks, both pore structure and the absolute number of pores (and pore connections) seem more important in controlling the electrical resistivity, instead of the size of the pore throats, as suggested by previous modeling studies; (2) samples with high resistivity can have high permeability; large simple pores facilitate flow of fluid, but fewer numbers of pores limit the flow of electric charge; and (3) pore-structure characteristics can be estimated from electrical resistivity data and used to improve permeability estimates and refine calculations of water saturation.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-01
    Description: Recent work has shown that there is a predictable inverse relationship between laboratory-measured sonic velocity response and porosity in carbonates, which can be reasonably approximated using the empirical Wyllie time-average equation (WTA). The relationship was initially identified in late Cretaceous to Cenozoic age samples collected from the Great Bahama Bank and the Maiella Platform, an exhumed Cretaceous carbonate platform in Italy. We have compared older carbonate samples from different basins and different geologic ages to determine the applicability of this relationship and subsequent correlations to key petrophysical properties to other carbonate basins and other geologic time periods. The data set used for the comparison shows this relationship to be relatively consistent in other depositional basins (Michigan Basin, Paradox Basin) and with samples from older geologic periods (Pennsylvanian, Ordovician, and Mississippian). However, this basic relationship is also observed to vary significantly within a reservoir system and within a depositional basin in samples from different geologic periods (e.g., Silurian- versus Ordovician-age rocks in the Michigan Basin). Although the empirical WTA can generally be applied as a first-order estimate across a wide range of sample ages in carbonates, limited data suggest the relationship between velocity and porosity to be moderately more complex. For instance, in unconventional carbonate reservoirs characterized by predominantly micro- to nanoscale porosity, it is observed that the WTA should be applied as an upper data boundary. In addition, this study has shown that the relationship to the dominant pore type is less direct than in a macropore system in which it can be assumed that the dominant pore type also has the greatest effect on the effective permeability.
    Print ISSN: 2324-8858
    Electronic ISSN: 2324-8866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-29
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-01
    Print ISSN: 1094-6470
    Electronic ISSN: 1930-0212
    Topics: Geosciences , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...