ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    San Diego : Academic Press
    Associated volumes
    Call number: 5/M 92.0428 ; AWI S2-95-0210
    In: International geophysics series, Volume 45
    Type of Medium: Monograph available for loan
    Pages: xii, 289 Seiten , Illustrationen
    Edition: revised edition
    ISBN: 0124909213 , 0-12-490921-3
    Series Statement: International geophysics series 45
    Classification:
    A.2.1.
    Language: English
    Note: CONTENTS: PREFACE. - INTRODUCTION. - 1 DESCRIBING INVERSE PROBLEMS. - 1.1 Formulating Inverse Problems. - 1.2 The Linear Inverse Problem. - 1.3 Examples of Formulating Inverse Problems. - 1.4 Solutions to Inverse Problems. - 2 SOME COMMENTS ON PROBABILITY THEORY. - 2.1 Noise and Random Variables. - 2.2 Correlated Data. - 2.3 Functions of Random Variables. - 2.4 Gaussian Distributions. - 2.5 Testing the Assumption of Gaussian Statistics. - 2.6 Confidence Intervals. - 3 SOLUTION OF THE LINEAR, GAUSSIAN INVERSE PROBLEM, VIEWPOINT 1: THE LENGTH METHOD. - 3.1 The Lengths of Estimates. - 3.2 Measures of Length. - 3.3 Least Squares for a Straight Line. - 3.4 The Least Squares Solution of the Linear Inverse Problem. - 3.5 Some Examples. - 3.6 The Existence of the Least Squares Solution. - 3.7 The Purely Underdetermined Problem. - 3.8 Mixed-Determined Problems. - 3.9 Weighted Measures of Length as a Type of A Priori Information. - 3.10 Other Types of A Priori Information. - 3.11 The Variance of the Model Parameter Estimates. - 3.12 Variance and Prediction Error of the Least Squares Solution. - 4 SOLUTION OF THE LINEAR, GAUSSIAN INVERSE PROBLEM, VIEWPOINT 2: GENERALIZED INVERSES. - 4.1 Solutions versus Operators. - 4.2 The Data Resolution Matrix. - 4.3 The Model Resolution Matrix. - 4.4 The Unit Covariance Matrix. - 4.5 Resolution and Covariance of Some Generalized Inverses. - 4.6 Measures of Goodness of Resolution and Covariance. - 4.7 Generalized Inverses with Good Resolution and Covariance. - 4.8 Sidelobes and the Backus-Gilbert Spread Function. - 4.9 The Backus-Gilbert Generalized Inverse for the Underdetermined Problem. - 4.10 Including the Covariance Size. - 4.11 The Trade-off of Resolution and Variance. - 5 SOLUTION OF THE LINEAR, GAUSSIAN INVERSE PROBLEM, VIEWPOINT 3: MAXIMUM LIKELIHOOD METHODS. - 5.1 The Mean of a Group of Measurements. - 5.2 Maximum Likelihood Solution of the Linear Inverse Problem. - 5.3 A Priori Distributions. - 5.4 Maximum Likelihood for an Exact Theory. - 5.5 Inexact Theories. - 5.6 The Simple Gaussian Case with a Linear Theory. - 5.7 The General Linear, Gaussian Case. - 5.8 Equivalence of the Three Viewpoints. - 5.9 The F Test of Error Improvement Significance. - 5.10 Derivation of the Formulas of Section 5.7. - 6 NONUNIQUENESS AND LOCALIZED AVERAGES. - 6.1 Null Vectors and Nonuniqueness. - 6.2 Null Vectors of a Simple Inverse Problem. - 6.3 Localized Averages of Model Parameters. - 6.4 Relationship to the Resolution Matrix. - 6.5 Averages versus Estimates. - 6.6 Nonunique Averaging Vectors and A Priori Information. - 7 APPLICATIONS OF VECTOR SPACES. - 7.1 Model and Data Spaces. - 7.2 Householder Transformations. - 7.3 Designing Householder Transformations. - 7.4 Transformations That Do Not Preserve Length. - 7.5 The Solution of the Mixed-Determined Problem. - 7.6 Singular-Value Decomposition and the Natural Generalized Inverse. - 7.7 Derivation of the Singular-Value Decomposition. - 7.8 Simplifying Linear Equality and Inequality Constraints. - 7.9 Inequality Constraints. - 8 LINEAR INVERSE PROBLEMS AND NON-GAUSSIAN DISTRIBUTIONS. - 8.1 L1 Norms and Exponential Distributions. - 8.2 Maximum Likelihood Estimate of the Mean of an Exponential Distribution. - 8.3 The General Linear Problem. - 8.4 Solving L1 Norm Problems. - 8.5 The L [Infinity symbol] Norm. - 9 NONLINEAR INVERSE PROBLEMS. - 9.1 Parameterizations. - 9.2 Linearizing Parameterizations. - 9.3 The Nonlinear Inverse Problem with Gaussian Data. - 9.4 Special Cases. - 9.5 Convergence and Nonuniqueness of Nonlinear L2 Problems. - 9.6 Non-Gaussian Distributions. - 9.7 Maximum Entropy Methods. - 10 FACTOR ANALYSIS. - 10.1 The Factor Analysis Problem. - 10.2 Normalization and Physicality Constraints. - 10.3 Q-Mode and R-Mode Factor Analysis. - 10.4 Empirical Orthogonal Function Analysis. - 11 CONTINUOUS INVERSE THEORY AND TOMOGRAPHY. - 11.1 The Backus-Gilbert Inverse Problem. - 11.2 Resolution and Variance Trade-off. - 11.3 Approximating Continuous Inverse Problems as Discrete Problems. - 11.4 Tomography and Continuous Inverse Theory. - 11.5 Tomography and the Radon Transform. - 11.6 The Fourier Slice Theorem. - 11.7 Backprojection. - 12 SAMPLE INVERSE PROBLEMS. - 12.1 An Image Enhancement Problem. - 12.2 Digital Filter Design. - 12.3 Adjustment of Crossover Errors. - 12.4 An Acoustic Tomography Problem. - 12.5 Temperature Distribution in an Igneous Intrusion. - 12.6 L1, L2, and L [infinity symbol] Fitting of a Straight Line. - 12.7 Finding the Mean of a Set of Unit Vectors. - 12.8 Gaussian Curve Fitting. - 12.9 Earthquake Location. - 12.10 Vibrational Problems. - 13 NUMERICAL ALGORITHMS. - 13.1 Solving Even-Determined Problems. - 13.2 Inverting a Square Matrix. - 13.3 Solving Underdetermined and Overdetermined Problems. - 13.4 L2 Problems with Inequality Constraints. - 13.5 Finding the Eigenvalues and Eigenvectors of a Real Symmetric Matrix. - 13.6 The Singular-Value Decomposition of a Matrix. - 13.7 The Simplex Method and the Linear Programming Problem. - 14 APPLICATIONS OF INVERSE THEORY TO GEOPHYSICS. - 14.1 Earthquake Location and the Determination of the Velocity Structure of the Earth from Travel Time Data. - 14.2 Velocity Structure from Free Oscillations and Seismic Surface Waves. - 14.3 Seismic Attenuation. - 14.4 Signal Correlation. - 14.5 Tectonic Plate Motions. - 14.6 Gravity and Geomagnetism. - 14.7 Electromagnetic Induction and the Magnetotelluric Method. - 14.8 Ocean Circulation. - APPENDIX A: Implementing Constraints with Lagrange Multipliers. - APPENDIX B: L2 Inverse Theory with Complex Quantities. - REFERENCES. - INDEX
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    New York : Columbia Univ. Press
    Call number: M 92.0458
    Type of Medium: Monograph available for loan
    Pages: xi, 458 S.
    ISBN: 0231067925
    Classification:
    A.2.1.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Orlando [u.a.] : Academic Press
    Call number: O 6123b ; G 8670 ; 13897 ; O 6123a ; MOP 47057 / Mitte
    Type of Medium: Monograph available for loan
    Pages: XII, 260 S. : graph. Darst.
    ISBN: 0124909205
    Location: Upper compact magazine
    Location: Upper compact magazine
    Location: Upper compact magazine
    Location: Upper compact magazine
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Call number: 19/M 16.90210
    Type of Medium: Monograph available for loan
    Pages: XVII, 321 Seiten , Illustrationen, Diagramme
    Edition: Second Edition
    Edition: Online-Ausg.
    ISBN: 9780128044889
    Classification:
    Mathematics
    Parallel Title: Print version Environmental data analysis with matlab
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; Depth, top/min; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 351 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 132 (1990), S. 363-400 
    ISSN: 1420-9136
    Keywords: Crustal scattering ; apparent attenuation ; anisotropy ; physical models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We study wave propagation through isotropic and anisotropic scatterer distributions in order to observe azimuthal variations in velocity and apparent attenuation. Using thin aluminum plates as physical models, we obtained seismograms for compressional and shear wave propagation through heterogeneous media. Three random distributions of scatterers are studied: circular scatterers in isotropic distributions (modeling circular scatterers), elongated scatterers in isotropic distributions (modeling randomly oriented elliptical scatterers), and elongated scatterers in anisotropic distributions (modeling aligned elliptical scatterers). All scatterers had approximately the same cross-sectional area and were filled with epoxy in order to reduce the impedance contrast. In addition to seismograms recorded for no scatterers, seismograms were recorded for several scatterer volume fractions. Azimuths were measured relative to the long axis of the aligned elongated scatterers. Velocities were calculated using travel times and phase shifts at low frequencies. The velocities measured from the data were compared to simple low-frequency average-velocity theories based on thin lamellae or on distributions of penny-shaped cracks. The apparent attenuation for different scatterer distributions was computed using spectral ratios. Comparisons of the results for circular and randomly oriented elongated scatterers were made to determine the effects of scatterer shape. As expected, the circular and randomly oriented elongated scatterers showed no systematic azimuthal variation in velocity. The velocity anomalies were systematically larger for the randomly oriented elongated scatterers than for the circular scatterers. Both methods of theoretical estimation for the isotropic velocities produced velocities significantly larger than those measured. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the circular scatterers. Comparisons of the results for the randomly oriented and aligned elongated scatterers were made to determine the effects of anisotropy in the scatterer distribution. Compressional waves for the aligned elongated scatterers with wave propagation parallel to the scatterers had larger velocities than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers for all velocity calculations. Shear wave velocities were complicated by an anomalous phase change in the shear wave seismograms for azimuths less than 40° and were not as conclusive. The general trend of the theoretical velocities is similar to the velocities calculated from the data. There are, however, what appear to be significant differences. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the aligned elongated scatterers with wave propagation parallel to the scatterers, and less attenuation than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Observations of shear-wave splitting in the north-eastern US and southern Canada provide evidence for seismic anisotropy in the lithosphere throughout most of the region. S-wave splitting times of the order of 1 s are found within the Proterozoic Grenville Province and at a number of sites within the Appalachian Orogen. As a notable exception, seismic anisotropy is weak or absent in Vermont and western New Hampshire—a transitional zone between Proterozoic and Palaeozoic terranes. The fast direction is westerly (260°–280°) within the Grenville Province, and north-westerly (300°–320°) in the Appalachians. The effects of seismic anisotropy on the traveltimes of body waves are modelled in a horizontal layer characterized by an anisotropic elastic tensor of olivine. Simulations are made to study the influence of parameters such as the fraction of anisotropic material, the angle between the tensor symmetry axis and the wave propagation direction, and the type of crystallographic axis aligned in olivine grains. Results indicate that earth models with S-wave splitting times of about 1 s should also have P traveltime anomalies (positive or negative) of the order of 0.2–0.3 s. Also, alignment along either axis (a or b) can produce the combination of P delays between −0.25 and −0.75 s and S-wave splitting times between 0.7 and 1.3 s observed in the Adirondack Mountains. We conclude that velocity anomalies found in this region by earlier studies may in part be due to seismic anisotropy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Two shear-wave profiles, E and G, collected during the 1977 Reykjanes Ridge Iceland Seismic Experiment have played an important role in models of the Icelandic crust. They were originally interpreted as indicating very low shear-wave velocities and abnormally low shear-wave quality factors in the 10–15 km depth range. These attributes, which are indicative of near-solidus temperatures, were used to support the hypothesis that the crust of Iceland is relatively thin (10–15 km) and underlain by partially molten material. More recent seismic data, however, contradict this hypothesis and suggest that the crust is thicker (20–30 km) and cooler. A re-examination of the RRISP-77 data indicates that the low shear-wave velocities are artefacts arising from source static anomalies (in the case of profile G) and misidentification of a secondary shear phase, SmS, as S (in the case of profile E). Furthermore, the attenuation occurs at ranges when rays from the shots pass near the Askja (profile E) and Katla and Oraefajokull (profile G) volcanoes. It may therefore have a localized source, and not be diagnostic of Icelandic crust as a whole. This new interpretation of the RRISP-77 shear-wave data is consistent with models having a thick, cold crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 110 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We use seismic wave polarization directions to determine three-dimensional seismic velocity structure. Linearized inverse theory is used. The data kernel, which represents the change in polarization direction at the receiver due to perturbations in the velocity structure is computed by a variational technique that employs ray integrals. Three-dimensional tests of the method using synthetic data demonstrate its accuracy and usefulness in the presence of noise.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 122 (1995), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Very little seismic attenuation occurs in the mid to lower crust of south-west Iceland. The lowest path-averaged quality factor for a wave turning in the mid to lower crust (12–20 km) is QP= 110 for P waves and QS= 250 for S waves, with most of the data having higher values, typically QP= 200–300 and QS= 400–600. Attenuation estimates based on a 1-D, layered inversion give correspondingly high values, QP 〉 800 and QS= 800–2000. These Q values are inconsistent with thermal models that predict a broad (100 km wide) region of above-solidus temperatures centred on the volcanic zones. The observed attenuation implies an upper limit for mid to lower crustal temperature in the 700–775°C range (assuming a gabbroic lithology). Much higher attenuation (QP= 60, QS= 100) occurs in the uppermost 4 km of crust. This is most likely apparent attenuation caused by strong near-surface seismic heterogeneity, resulting from fissures, faults and extreme changes in porosity (up to 20–30 per cent). The quality factor of the near-surface layer varies regionally, and is lower in volcanic zones than in either the Reykjanes Peninsula or the South Iceland Lowland.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...