ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 11/M 01.0114
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The review chapters in this volume were the basis for a short course on sulfate minerals sponsored by the Mineralogical Society of America (MSA) November 11-12, 2000 in Tahoe City, California, prior to the Annual Meeting of MSA, the Geological Society of America, and other associated societies in nearby Reno, Nevada. The conveners of the course (and editors of this volume of Reviews in Mineralogy and Geochemistry), Alpers, John Jambor, and Kirk Nordstrom, also organized related topical sessions at the GSA meeting on sulfate minerals in both hydrothermal and low-temperature environments. Sulfate is an abundant and ubiquitous component of Earth's lithosphere and hydrosphere. Sulfate minerals represent an important component of our mineral economy, the pollution problems in our air and water, the technology for alleviating pollution, and the natural processes that affect the land we utilize. Vast quantities of gypsum are consumed in the manufacture of wallboard, and calcium sulfates are also used in sculpture in the forms of alabaster (gypsum) and papier-mache (bassanite). For centuries, AI-sulfate minerals, or "alums," have been used in the tanning and dyeing industries, and these sulfate minerals have also been a minor source of aluminum metal. Barite is used extensively in the petroleum industry as a weighting agent during drilling, and celestine (also known as "celestite") is a primary source of strontium for the ceramics, metallurgical, glass, and television face-plate industries. Jarosite is a major waste product of the hydrometallurgical processing of zinc ores and is used in agriculture to reduce alkalinity in soils. At many mining sites, the extraction and processing of coal or metal-sulfide ores (largely for gold, silver, copper, lead, and zinc) produce waste materials that generate acid-sulfate waters rich in heavy metals, commonly leading to contamination of water and sediment. Concentrated waters associated with mine wastes may precipitate a variety of metal-sulfate minerals upon evaporation, oxidation, or neutralization. Some of these sulfate minerals are soluble and store metals and acidity only temporarily, whereas others are insoluble and improve water quality by removing metals from the water column. There is considerable scientific interest in the mineralogy and geochemistry of sulfate minerals in both high-temperature (igneous and hydrothermal) and low-temperature (weathering and evaporite) environments. The physical scale of processes affected by aqueous sulfate and associated minerals spans from submicroscopic reactions at mineral-water interfaces to global issues of oceanic cycling and mass balance, and even to extraterrestrial applications in the exploration of other planets and their satellites. In mineral exploration, minerals of the alunite-jarosite supergroup are recognized as key components of the advanced argillic (acid-sulfate) hydrothermal alteration assemblage, and supergene sulfate minerals can be useful guides to primary sulfide deposits. The role of soluble sulfate minerals formed from acid mine drainage (and its natural equivalent, acid rock drainage) in the storage and release of potentially toxic metals associated with wet-dry climatic cycles (on annual or other time scales) is increasingly appreciated in environmental studies of mineral deposits and of waste materials from mining and mineral processing. This volume compiles and synthesizes current information on sulfate minerals from a variety of perspectives, including crystallography, geochemical properties, geological environments of formation, thermodynamic stability relations, kinetics of formation and dissolution, and environmental aspects. The first two chapters cover crystallography (Chapter 1) and spectroscopy (Chapter 2). Environments with alkali and alkaline earth sulfates are described in the next three chapters, on evaporites (Chapter 3), barite-celestine deposits (Chapter 4), and the kinetics of precipitation and dissolution of gypsum, barite, and celestine (Chapter 5). Acidic environments are the theme for the next four chapters, which cover soluble metal salts from sulfide oxidation (Chapter 6), iron and aluminum hydroxysulfates (Chapter 7), jarosites in hydrometallugy (Chapter 8), and alunite-jarosite crystallography, thermodynamics, and geochronology (Chapter 9). The next two chapters discuss thermodynamic modeling of sulfate systems from the perspectives of predicting sulfate-mineral solubilities in waters covering a wide range in composition and concentration (Chapter 10) and predicting interactions between sulfate solid solutions and aqueous solutions (Chapter 11). The concluding chapter on stable-isotope systematics (Chapter 12) discusses the utility of sulfate minerals in understanding the geological and geochemical processes in both high- and low-temperature environments, and in unraveling the past evolution of natural systems through paleoclimate studies.
    Type of Medium: Monograph available for loan
    Pages: xiii, 608 S.
    ISBN: 0-939950-52-9 , 978-0-939950-52-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 40
    Classification:
    Mineralogy
    Note: Chapter 1. The Crystal chemistry of Sulfate Minerals by Frank C. Hawthorne, Servey V. Krivovichev, and Peter C. Burns, p. 1 - 112 Chapter 2. X-ray and Vibrational Spectroscopy of Sulfate in Earth Materials by Satish C. B. Myneni, p. 113 - 172 Chapter 3. Sulfate Minerals in Evaporite Deposits by Ronald J. Spencer, p. 173 - 192 Chapter 4. Barite-Celestine Geochemistry and Environments of Formation by Jeffrey S. Hanor, p. 193 - 276 Chapter 5. Precipitation and Dissolution of Alkaline Earth Sulfates: Kinetics and Surface Energy by A. Hina and G. H. Nancollas, p. 277 - 302 Chapter 6. Metal-sulfate Salts from Sulfide Mineral Oxidation by John L. Jambor, D. Kirk Nordstrom, and Charles N. Alpers, p. 303 - 350 Chapter 7. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters by J. M. Bigham and D. Kirk Nordstrom, p. 351 - 404 Chapter 8. Jarosites and Their Application in Hydrometallurgy by John E. Dutrizac and John L. Jambor, p. 405 - 452 Chapter 9. Alunite-Jarosite Crystallography, Thermodynamics, and Geochemistry by R. E. Stoffregen, C. N.. Alpers, and John L. Jambor, p. 453 - 480 Chapter 10. Solid-Solution Solubilities and Thermodynamics: Sulfates, Carbonates and Halides by Pierre Glynn, p. 481 - 512 Chapter 11. Predicting Sulfate-Mineral Solubility in Concentrated Waters by Carol Ptacek and David Blowes, p. 513 - 540 Chapter 12. Stable Isotope Systematics of Sulfate Minerals by Robert R. Seal, II, Charles N. Alpers, and Robert O. Rye, p. 541 - 602
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: Arsenic is perhaps history’s favorite poison, often termed the "King of Poisons" and the "Poison of Kings" and thought to be the demise of fiction’s most famous ill-fated lovers. The toxic nature of arsenic has been known for millennia with the mineral realgar (AsS), originally named “arsenikon” by Theophrastus in 300 B.C.E. meaning literally "potent." For centuries it has been used as rat poison and as an important component of bactericides and wood preservatives. Arsenic is believed to be the cause of death to Napoleon Bonaparte who was exposed to wallpaper colored green from aceto-arsenite of copper (Aldersey-Williams 2011). The use of arsenic as a poison has been featured widely in literature, film, theatre, and television. Its use as a pesticide made it well known in the nineteenth century and it was exploited by Sir Arthur Conan Doyle in the Sherlock Holmes novel The Golden Pince-Nez (Conan-Doyle 1903). The dark comedy Arsenic and Old Lace is a prime example of arsenic in popular culture, being first a play but becoming famous as a movie. Arsenic has figured prominently not only in fiction but in historical crimes as well (Kumar 2010). A high profile case of the mid-nineteenth century involved a hydrotherapist, Dr. Thomas Smethurst, who was accused of using arsenic to poison a woman he had befriended (Wharton 2010). Based on analytical evidence from a renowned toxicologist, Alfred Swaine Taylor, a death sentence was imposed, however Taylor had to confess that his apparatus was contaminated. The verdict was overturned after public opinion was voiced against it and a plea for clemency was made to Queen Victoria. In recent years, arsenic has been recognized as a widespread, low-level, natural groundwater contaminant in many parts of the world, particularly in places such as West Bengal and Bangladesh, where it has given rise to chronic human-health issues. Long-term exposure to arsenic has been shown to cause skin lesions, blackfoot disease, and cancer of the skin, bladder, and lungs, and is also associated with developmental effects, cardiovascular disease, neurotoxicity, and diabetes (WHO 2012). Arsenate’s toxicity is caused by its close chemical similarities to phosphate; it uses a phosphate transport system to enter cells. Arsenic occurs in many geological environments including sedimentary basins, and is particularly associated with geothermal waters and hydrothermal ore deposits. It is often a useful indicator of proximity to economic concentrations of metals such as gold, copper, and tin, where it occurs in hydrothermally altered wall rocks surrounding the zones of economic mineralization. Arsenic is commonly a persistent problem in metal mining and there has been significant effort to manage and treat mine waste to mitigate its environmental impacts. This volume compiles and reviews current information on arsenic from a variety of perspectives, including mineralogy, geochemistry, microbiology, toxicology, and environmental engineering. The first chapter (Bowell et al. 2014) presents an overview of arsenic geochemical cycles and is followed by a chapter on the paragenesis and crystal chemistry of arsenic minerals (chapter 2; Majzlan et al. 2014). The next chapters deal with an assessment of arsenic in natural waters (chapter 3; Campbell and Nordstrom 2014) and a review of thermodynamics of arsenic species (chapter 4; Nordstrom et al. 2014). The next two chapters deal with analytical measurement and assessment starting with measuring arsenic speciation in solids using x-ray absorption spectroscopy (chapter 5; Foster and Kim 2014). Chapter 6 (Leybourne and Johannesson 2014) presents a review on the measurement of arsenic speciation in environmental media: sampling, preservation, and analysis. In chapter 7 (Amend et al. 2014) there is a review of microbial arsenic metabolism and reaction energetics. This is followed by an overview of arsenic toxicity and human health issues (chapter 8; Mitchell 2014) and an assessment of methods used to characterize arsenic bioavailability and bioaccessibility (chapter 9; Basta and Jurasz 2014). This leads into chapter 10 (Craw and Bowell 2014), which describes the characterization of arsenic in mine waste with some examples from New Zealand, followed by a chapter on the management and treatment of arsenic in mining environments (chapter 11; Bowell and Craw 2014). The final three chapters are in-depth case studies of the geochemistry and mineralogy of legacy arsenic contamination in different historical mining environments: the Giant gold mine in Canada (chapter 12; Jamieson 2014), the Sierra Nevada Foothills gold belt of California (chapter 13; Alpers et al. 2014), and finally, the hydrogeochemistry of arsenic in the Tsumeb polymetallic mine in Namibia (chapter 14; Bowell 2014).
    Pages: Online-Ressource (xvi ; 635 Seiten)
    ISBN: 9780939950942
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: acid mine drainage ; acidophilic bacteria ; heliozoans ; iron bacteria ; rhizopods ; rotifers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values 〈1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-01-01
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-01
    Print ISSN: 1467-7873
    Electronic ISSN: 1467-7873
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-03-13
    Print ISSN: 0167-6369
    Electronic ISSN: 1573-2959
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-16
    Print ISSN: 0149-0451
    Electronic ISSN: 1521-0529
    Topics: Biology , Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-10-23
    Electronic ISSN: 1467-4866
    Topics: Chemistry and Pharmacology , Geosciences
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-04-01
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-03-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...