ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Boulder, Colo. : National Center for Atmospheric Research
    Associated volumes
    Call number: AWI A6-16-90344
    In: NCAR technical notes / National Center for Atmospheric Research : STR ; 366
    Type of Medium: Series available for loan
    Pages: 256 S , Ill., graph. Darst
    Series Statement: NCAR-TN 366 : STR
    Language: English
    Note: Table of Contents: 1. Data description. - Origin. - Changes in Operational Analysis Systems. - Geopotential grid processing. - Temperature, wind and wave flux calculations. - 2. Statistical calculations. - 3. References. - 4. Results. - Monthly average meridional cross sections. - Means and variances of zonal mean winds, temperatures and wave fluxes, plus stationary and transient wave statistics. - Hemispheric polar projections for January, April, July and October. - Mean geopotential height, temperature, wind speed and daily geopotential variance maps for 700, 500, 300, 100, 50, 10 and 1 mb. - Ensemble average latitude-time diagrams. - Zonal mean winds and temperatures, and stationary and transient eddy geopotential height, temperature and wave flux quantities. - Ensemble average height-time diagrams. - Zonal mean winds and temperatures, and stationary and transient eddy geopotential heights and temperatures. - Latitude-time and height-time diagrams of zonal winds and rms geopotential, height wave amplitudes for individual years 1979-1990. - Tables of monthly mean temperatures and zonal winds.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 431 (2004), S. 920-921 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Climate variations associated with the El Niño/Southern Oscillation (ENSO) cause droughts, floods and extreme temperatures over much of the tropics, and the effects are often felt in North America. Brönnimann et al. (page 971 of this issue) now show that climate anomalies ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-08
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-08
    Description: It is well established that increasing greenhouse gases, notably CO2, will cause an acceleration of the stratospheric Brewer-Dobson circulation (BDC) by the end of this century. We here present compelling new evidence that ozone depleting substances are also key drivers of BDC trends. We do so by analyzing and contrasting small ensembles of “single-forcing” integrations with a stratosphere resolving atmospheric model with interactive chemistry, coupled to fully interactive ocean, land, and sea ice components. First, confirming previous work, we show that increasing concentrations of ozone depleting substances have contributed a large fraction of the BDC trends in the late twentieth century. Second, we show that the phasing out of ozone depleting substances in coming decades—as a consequence of the Montreal Protocol—will cause a considerable reduction in BDC trends until the ozone hole is completely healed, toward the end of the 21st century. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-15
    Description: Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (〉17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16–19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale (~6,000 km in longitude) with minimum temperature anomaly of ~ −2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-04
    Description: Simulated stratospheric temperatures over the period 1979–2016 in models from the Chemistry-Climate Model Initiative are compared with recently updated and extended satellite data sets. The multimodel mean global temperature trends over 1979–2005 are −0.88 ± 0.23, −0.70 ± 0.16, and −0.50 ± 0.12 K/decade for the Stratospheric Sounding Unit (SSU) channels 3 (~40–50 km), 2 (~35–45 km), and 1 (~25–35 km), respectively (with 95% confidence intervals). These are within the uncertainty bounds of the observed temperature trends from two reprocessed SSU data sets. In the lower stratosphere, the multimodel mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13–22 km) is −0.25 ± 0.12 K/decade over 1979–2005, consistent with observed estimates from three versions of this satellite record. The models and an extended satellite data set comprised of SSU with the Advanced Microwave Sounding Unit-A show weaker global stratospheric cooling over 1998–2016 compared to the period of intensive ozone depletion (1979–1997). This is due to the reduction in ozone-induced cooling from the slowdown of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite-observed stratospheric temperature trends than was reported by Thompson et al. (2012, https://doi.org/10.1038/nature11579) for the previous versions of the SSU record and chemistry-climate models. The improved agreement mainly comes from updates to the satellite records; the range of stratospheric temperature trends over 1979–2005 simulated in Chemistry-Climate Model Initiative models is comparable to the previous generation of chemistry-climate models. ©2018. The Authors.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-17
    Description: The regions around the subtropical jets in the upper troposphere and lower stratosphere (UTLS) are characterized by strong isentropic stirring and mixing. In this work, the wave spectrum of the associated eddy tracer fluxes is examined using an artificial passive tracer advected on isentropes by the two-dimensional flow. The eddy diffusivity computed from the flux–gradient relation captures the main features of the mixing structure. Eddy transport in the UTLS is strongest in the summer hemisphere, and weak eddy fluxes are found at the core and poleward of the subtropical jets, especially in the winter hemisphere. There is an important contribution of stationary planetary equatorial Rossby waves in the tropical upper troposphere. The transient eddy tracer transport is primarily linked to medium-scale waves (wavenumbers ~4–7) breaking in the regions of weak westerlies around the subtropical jets and to planetary-scale waves at high latitudes. Phase-speed spectra for transient eddy fluxes show a close relationship of waves to the background zonal wind. In the deep tropics, traveling equatorial and Rossby waves of extratropical origin lead to cross-equatorial tracer transport throughout the upper troposphere. Interannual changes show that eddy tracer fluxes closely follow the shifts in the zonal winds associated with El Niño–Southern Oscillation and the quasi-biennial oscillation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-01
    Description: The zonal wavenumber spectrum of atmospheric wave forcing in the lower stratosphere is examined to understand the annual cycle of upwelling at the tropical tropopause. Tropopause upwelling is derived based on the wave forcing computed from ERA-Interim using the momentum and mass conservation equations in the transformed Eulerian-mean framework. The calculated upwelling agrees well with other upwelling estimates and successfully captures the annual cycle, with a maximum during Northern Hemisphere (NH) winter. The spectrum of wave forcing reveals that the zonal wavenumber-3 component drives a large portion of the annual cycle in upwelling. The wave activity flux (Eliassen–Palm flux) shows that the associated waves originate from the NH extratropics and the Southern Hemisphere tropics during December–February, with both regions contributing significant wavenumber-3 fluxes. These wave fluxes are nearly absent during June–August. Wavenumbers 1 and 2 and synoptic-scale waves have a notable contribution to tropopause upwelling but have little influence on the annual cycle, except the wavenumber-4 component. The quasigeostrophic refractive index suggests that the NH extratropical wavenumber-3 component can enhance tropopause upwelling because these planetary-scale waves are largely trapped in the vertical, while being refracted toward the subtropical upper troposphere and lower stratosphere. Regression analysis based on interannual variability suggests that the wavenumber-3 waves are related to tropical convection and wave breaking along the subtropical jet in the NH extratropics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-16
    Description: Temperature trends in the middle and upper stratosphere are evaluated using measurements from the Stratospheric Sounding Unit (SSU), combined with data from the Aura Microwave Limb Sounder (MLS) and Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instruments. Data from MLS and SABER are vertically integrated to approximate the SSU weighting functions and combined with SSU to provide a data record spanning 1979–2015. Vertical integrals are calculated using empirically derived Gaussian weighting functions, which provide improved agreement with high-latitude SSU measurements compared to previously derived weighting functions. These merged SSU data are used to evaluate decadal-scale trends, solar cycle variations, and volcanic effects from the lower to the upper stratosphere. Episodic warming is observed following the volcanic eruptions of El Chichón (1982) and Mt. Pinatubo (1991), focused in the tropics in the lower stratosphere and in high latitudes in the middle and upper stratosphere. Solar cycle variations are centered in the tropics, increasing in amplitude from the lower to the upper stratosphere. Linear trends over 1979–2015 show that cooling increases with altitude from the lower stratosphere (from ~−0.1 to −0.2 K decade−1) to the middle and upper stratosphere (from ~−0.5 to −0.6 K decade−1). Cooling in the middle and upper stratosphere is relatively uniform in latitudes north of about 30°S, but trends decrease to near zero over the Antarctic. Mid- and upper-stratospheric temperatures show larger cooling over the first half of the data record (1979–97) compared to the second half (1998–2015), reflecting differences in upper-stratospheric ozone trends between these periods.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-20
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...