ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Sprache
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Themen (Es wird nur nach Zeitschriften und Artikeln gesucht, die zu einem oder mehreren der ausgewählten Themen gehören)
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (7)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2012-08-01
    Print ISSN: 1070-4272
    Digitale ISSN: 1608-3296
    Thema: Chemie und Pharmazie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-11-01
    Print ISSN: 1070-4272
    Digitale ISSN: 1608-3296
    Thema: Chemie und Pharmazie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: No abstract available
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-29472 , National Space Biomedical Research Inst.; Aug 28, 2013; Houston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-19
    Beschreibung: Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short-duration (Space Shuttle) and long-duration (Mir and International Space Station [ISS]) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long-duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (〈24 hours) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented testing at the landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long-duration space-flight crews beginning as soon after landing as possible (〈 2 hours) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, egressing from a seated position, walking normally without falling, measuring of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall, coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired between one and three more other times within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-totoe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors, and severity of postflight motion sickness were collected for each test session. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends that has not been previously captured in over 50 years of space flight.
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-30681 , International Society for Gravitational Physiology 2014--Life in Space for Life on Earth; Jun 15, 2014 - Jun 20, 2014; Waterloo, Ontario; Canada
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-13
    Beschreibung: The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (〈 2 hours) with an additional two follow-up measurements sessions on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall (standing from a prone position), coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data is being acquired twice more within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a initial evaluation of the feasibility of testing in the field, and is comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from bodyworn inertial sensors, and severity of postflight motion sickness were collected during each test session. Our Russian investigators have added measurements associated with: (a) obstacle avoidance, (b) muscle compliance and (c) postural adjustments to perturbations (push) applied to the subject's chest area. The level of functional deficit observed in the crew tested to date is typically beyond what was expected and is clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-32152 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-19
    Beschreibung: Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest have do serve as acceptable flight analogs, testing of crew responses following the long duration flights does not begin until a minimum of 24 hours after landing. As a result it is not possible to estimate the nonlinear trend of the early (〈24 hr) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations both the Russian and U.S. sides have implemented testing at the time of landing and before the flight crews have left the landing site. By joint agreement this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (〈 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements including an evaluation of NASA's new anti-orthostatic compression garment as compared with the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the hands and legs, recovery from a fall, a coordinated walk involving tandem heel-to-toe placement and determination of postural ataxia while standing. The cardiovascular portion of the investigation includes blood pressure and heart rate measurements during a timed stand test in conjunction with postural ataxia testing. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content, and implementation. The PFT is currently scheduled for the September 2013 landing of the Soyuz spacecraft (34S). Testing will include: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember begins in the prone position on the ground and then stands for 3 min while cardiovascular stability is determined and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors and severity of postflight motion sickness will be available for analysis. It is our intent to present, at this celebratory symposium, a summary of these data obtained from two crewmembers. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiological data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers. Overall, these early functional and related physiological measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends to an accuracy that has not been previously captured in over 50 years of space flight.
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-29328 , Conference on Space Biology and Aerospace Medicine; Aug 21, 2013; Moscow; Russia
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-19
    Beschreibung: Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (〈24 hr) recovery process, nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations, both the Russian and U.S. sides have implemented testing at landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (〈 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the hands and legs, recovery from a fall, a coordinated walk involving tandem heel-to-toe placement, and determination of postural ataxia while standing. The cardiovascular portion of the investigation includes blood pressure and heart rate measurements during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT was first conducted following the September 2013 landing of the Soyuz spacecraft (34S) and again following the landing of Soyuz 35S in November. Testing included: (1) a sit-tostand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 min while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors and severity of postflight motion sickness were collected for analysis. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiological data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiological measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends to an accuracy that has not been previously captured in over 50 years of space flight.
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-30032 , NASA Human Research Program Investigators'' Workshop; Feb 12, 2014 - Feb 13, 2014; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...