ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2021-06-15
    Description: Twenty-two gas samples were collected in August 2012 in the area of Amik basin (Turkey). Two samples were collected from gas seeps, one was a bubbling gas in a thermal spring, while the remaining were dissolved gases from cold and thermal groundwaters (T 16-43 °C). All gases were analysed for their chemical composition (He, H2, O2, N2, CH4 and CO2) and for their He isotopic composition. Dissolved gases were also analysed for the carbon isotopic composition of the total dissolved carbon (TDC), while free gases also for their higher hydrocarbon (C1 – C5) content and for D of H2 and CH4, 13C of CH4 Basing on their chemical composition, the gases can be roughly subdivided in three groups. Most of the dissolved gases (16) belonging to the first group were collected from springs or shallow wells (〈 150 m depth). All these samples contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1 – 2700 ppm) contents and minor concentrations of CO2 (0.5 – 11.2 %). The isotopic composition of TDC evidences an almost organic contribution. The only exception is represented by the CO2-richest sample where a small but significant mantle contribution is found. Such contribution can also be evidenced in its 3He rich isotopic composition. Further three samples of this group evidence a small mantle contribution. These samples were collected in the northern part of the basin along the main tectonic structures delimiting the basin and close to areas with quaternary volcanic activity. A second group is composed by two dissolved gases collected from deep boreholes (〉 1200 m depth). Their composition is typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). Also the water composition is typical of saline connate waters (Cl- and B-rich, SO4-poor). C-isotopic composition of methane ( 13C -65% ) points to a biogenic origin while He-isotopic composition indicates a prevailing crustal signature for one (R/Ra 0.16) of the sites and small mantle contribution for the other (R/Ra 0.98). To the last group belong four gas samples taken at two sites within the ophiolitic basement that crops out west of the basin. These gases have the characteristic composition of gas generated by low temperature serpentinisation processes with high hydrogen (37 – 50 %) and methane (10 – 61 %) concentrations. While all gases show an almost identical D-H2 of -750h those of one of the two sites display an isotopic composition of methane ( 13C -5h D -105% ) and a C1/[C2+C3] ( 100) ratio typical of abiogenic hydrocarbons and mantle-type helium (R/Ra: 1.33), while those of the other site evidence a contribution of a crustal (thermogenic) component ( 13C-CH4 -30h D -325h C1/[C2+C3] 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07). The preliminary results highlight contributions of mantle-derived volatiles to the fluids vented along the Amik Basin. The main tectonic structure of the area, the Death Sea Fault, and other parallel structures crossing the basin seem to be the responsible for deep-originated volatiles drainage towards shallow levels.
    Description: Submitted
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: gas geochemistry ; water chemistry ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-15
    Description: We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of theDSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (fromboreholes deeper than 1000 m)have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Description: Published
    Description: 23–39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Dead Sea Fault ; Hydrogeochemistry ; Gas geochemistry ; He isotopes ; C isotopes ; Ophiolites ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Climate Change 2001: The Scientific Basis. Contribution of Working Group to the Third Assessment Report of the Intergouvernmental Panel on Climate Change [Houghton, J.T. et al. (eds)]. Cambridge University Press, Cambridge, United Kongdom and New York, US, 881 p., ISBN: 0521 01495 6
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 2135-2142 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: First-principles atomic cluster calculations have been carried out in the local density approximation to understand the segregation behavior and strengthening effects of boron in Ni3Al. The binding energy of boron is calculated in lattice fragment clusters representing the perfect crystal, as well as various defect sites. The agreement between trends in energetics determined for small clusters and periodic supercells indicates the dominant role of boron's interaction with nearest-neighbors of the host. The stereochemical factor underlying boron's preferential bonding to nickel atoms in four-fold planar coordination (i.e., sp3 hybridization) suggests a mechanism for the boron-effect in Ni3Al: increased cohesion provides a driving force for B segregation to open sites, such as at Ni-enriched grain boundary sites, and the strengthening is a result of strong localized Ni–B covalent bond formation. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transport scattering and single-particle relaxation times which characterize a two-dimensional electron system have been investigated by using thermal neutron irradiation. The ratios of transport scattering time to single-particle relaxation time are observed to vary from 1.7 to 7.8 depending on the electron density. A decrease in single-particle relaxation time is found while the transport scattering time increases as the electron concentrations increase. These phenomena are relevant to the Hall plateau broadening and enhancement of Shubnikov–de Haas oscillations in such an experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of lattice distortion on the physical properties of La0.7Ca0.3MnO3 epitaxial films are investigated. Our results suggest that larger substrate-induced lattice distortion gives rise to larger zero-field resistivity and larger negative magnetoresistance. Similar effects are also observed in samples of different thicknesses and on the same substrate material, with larger resistivity and magnetoresistance associated with thinner samples. In addition to x-ray diffraction spectroscopy, the degrees of lattice distortion in different samples are further verified by the surface topography taken with a low-temperature scanning tunneling microscope. Quantitative analyses of the transport properties suggest that the high-temperature (T→TC) colossal magnetoresistance (CMR) in the manganites is consistent with the conduction of lattice polarons induced by the Jahn–Teller coupling, and that the low-temperature (T(very-much-less-than)TC) magnetoresistance may be attributed to the magnetic domain wall scattering. In contrast, the absence of the Jahn–Teller coupling and the large conductivity in La0.5Ca0.5CoO3 epitaxial films yield much smaller negative magnetoresistance, which may be attributed to disorder-spin scattering. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 63 (1988), S. 4220-4225 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present high-precision results on the electronic band structure and properties of YBa2Cu3O7−δ, YB2Cu3O6, GdBa2Cu3O7−δ, and La2−xMxCuO4 as obtained from highly precise state-of-the-art local density calculations. The results obtained demonstrate the close relation of the band structure to the structural arrangements of the constituent atoms and provide an integrated chemical and physical picture of the interactions and their possible relation to superconductivity. The ionic character of the Y is proven by similar detailed highly precise local density calculations for high TC GdBa2Cu3O7, and explains the coexistence of magnetism and superconductivity in the high TC rare-earth superconductors. Surprising features are the low density of states (DOS) at EF, especially for δ≥0.1 which is lower per Cu atom than that in La2−xSrxCuO4—in agreement with experiment and a relatively large magnetic Stoner factor. Strong indications are demonstrated for the inadequacy of a conventional phonon mechanism for obtaining the higher TC. Charge transfer excitations of occupied Cu1−O dpπ antibonding orbitals into their empty Cu1-O dpσ antibonding orbital partners, result in poorly screened "Cu3+-Cu4+'' -like charge fluctuations. These charge transfer excitations (excitons) thus lead to strong polarization effects in these poorly screened (highly ionic) materials and induce attractive interactions among the 2D electrons. Thus, these interactions via exchange of excitons enhance the electron pairing and serve to enhance the TC proposed for the quasi-2D superconductors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 3356-3361 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The study of magnetism in low-dimensional systems has entered a new phase thanks to (i) the advent of sophisticated synthesis and characterization techniques and (ii) the development of highly precise theoretical methods. We describe recent developments and applications of an all-electron total energy local spin density approach for determining the structural, electronic, and magnetic properties of surfaces, overlayers and interfaces, and sandwiches. Particular emphasis is placed, and results are given, on these structures involving transition metals (V, Cr, and Fe) on noble metals (Cu, Ag, and Au), simple metals (Al), and a nonmagnetic transition metal (W). Magnetic hyperfine fields are given for some Fe systems since conversion electron Mössbauer spectroscopy now permits detailed layer-by-layer tests of the theoretical predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 5350-5352 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Scanning tunneling spectroscopy was performed at 4.2 K on epitaxial thin-film heterostructures comprising YBa2Cu3O7−δ and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high Tc cuprate superconductor. The quasiparticle tunneling characteristics observed were consistent with d-wave pairing symmetry, with a gap-maximum Δ0(approximate)22 meV, up to at least 35 mA (7×103 A/cm2) injection. Spectral smearing observed at higher injections could be fitted to elevated effective quasiparticle temperatures, even though negligible sample heating was detected by in situ thermometry. The overall spectral evolution with the injection current also appears to be nonthermal in character, showing a nonmonotonic change in both the zero-bias tunneling conductance and the area under the conductance spectrum. We discuss general implications of these results for the scenario of dynamic pair breaking by a nonequilibrium distribution of spin-polarized quasiparticles. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 7702-7704 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the study of high frequency magnetotransport properties of the chromium dioxide (CrO2) thin films, grown on Si substrate using chemical vapor deposition. The film exhibits a ferromagnetic transition with a Curie temperature near 390 K. The temperature dependent spontaneous magnetization follows Bloch's law. The impedance spectra, being analyzed based on the fundamental electrodynamics, are demonstrated to be in a low-loss dielectric limit along with the occurrence of dielectric relaxation and magnetization response. The specific features of impedance spectra, distinct from the usual metallic ferromagnet, are attributed to the half metallic nature of CrO2. The results explore the possibility for high frequency device applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...