ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Munksgaard International Publishers
    Physiologia plantarum 124 (2005), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variegation in the immutans (im) mutant of Arabidopsis is induced by a nuclear recessive gene. The white leaf sectors of im contain abnormal plastids lacking pigments and organized lamellae, whereas the green leaf sectors possess normal-appearing chloroplasts. IMMUTANS codes for a thylakoid membrane terminal oxidase that functions as a safety valve to dissipate excess energy. Previous studies have shown that the green sectors of im, regardless of illumination conditions, have anatomical adaptations that are reminiscent of acclimation to high-light stress. It has been suggested that these adaptations provide a means of enhancing photosynthesis to feed the white sectors and maximize plant growth. We have utilized Chl fluorescence imaging to better understand these compensatory mechanisms using, as our experimental material, im leaves with predominantly green (img) or predominantly white (imw) tissues. The samples were examined under conditions of normal growth or high-light stress (photoinhibition). Steady-state fluorescence quenching revealed that the green sectors of the imw leaves had lower levels of 1 − qp than the img leaves, and that this was accompanied by increased electron transport rates. In response to short-term high-light exposure, the green sectors of the imw leaves displayed enhanced non-photochemical quenching (NPQ), which correlated with increased xanthophyll pool sizes and increased amounts of several different Lhcb polypeptides and the PsbS protein. In summary, our data show that, compared with primarily green leaves (img), the green sectors of predominantly white leaves (imw) have elevated rates of electron transport and an enhanced NPQ capacity. We conclude that, in the absence of IM, green sectors develop morphological and biochemical adaptations that allow them to maximize photosynthesis to feed the white sectors, and to protect against photodamage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ∼1-2Ma. Estimates of extension (∼3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 265 (1977), S. 762-762 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] JONES, in his interpretation of the activity cycle of the mosquito Culex pipiens fatigans Wied. in constant light (LL) following a light : dark (LD) regime of 12 h light and 12 h dark1, stated that it was possible to calculate that the first peak should have occurred about 18 h after light-on or 6 ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 411 (2001), S. 930-934 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 416 (2002), S. 417-420 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away. In back-arc basins, the subducting slab is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 374 (1995), S. 534-537 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] OUR understanding of the processes by which continents rift and sea-floor spreading initiates is derived primarily from studies either of old passive margins and oceanic crust or of young regions of intra-continental extension where spreading has not yet started. It has been thought that ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] It is widely believed that the Lau basin opened as the Tonga ridge rifted and drifted away from the Lau ridge (Fig. 1), but no consensus exists as to how the crust of the Lau basin was formed. For more than twenty years, geologists and geophysic-ists have debated the relative importance of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 13 (1991), S. 131-152 
    ISSN: 1573-0581
    Keywords: Canyon ; erosion ; sediment Forearc ; mass wasting ; Izu-Bonin ; Aoga Shima
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed 〉16 km3 of sediment from an ∼85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows. Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for 〈25% of that eroded from the canyons alone. This implies that a large volume (〉3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 16 (1994), S. 65-89 
    ISSN: 1573-0581
    Keywords: Triple junction ; ridge subduction ; near-trench volcanism ; Woodlark Basin ; Solomon Islands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Woodlark triple junction region, a topographically and structurally complex triangular area of Quaternary age, lies east of Simbo Ridge and southwest of the New Georgia island group, Solomon Islands, at the junction of the Pacific, Australian and Solomon Sea plates. SeaMARC II side-scan imagery and bathymetry in conjunction with seismic reflection profiles, 3.5 kHz records, and petrologic, magnetic and gravity data show that the active Woodlark spreading centre does not extend into this region. South of the triple junction region, the Woodlark spreading centre reoriented at about 2 Ma into a series of short ESE-trending segments. These segments continued to spread until about 0.5 Ma, when the lithosphere on their northern sides was transferred from the Solomon Sea plate to the Australian plate. Simultaneously the Simbo transform propagated northwards along the western side of the transferred lithosphere, forming a trench-trench-transform triple junction located NNW of Simbo island and a new leaky plate boundary segment that built Simbo Ridge. As the Pacific plate approached, the area east of northern Simbo Ridge was tilted northwards, sheared by dominantly right-lateral faults, elevated, and intruded by arc-related magmas to form Ghizo Ridge. Calc-alkalic magmas sourced beneath the Pacific plate built three large strato-volcanic edifices on the subducting Australian plate: Simbo at the northern end of Simbo Ridge, and Kana Keoki and Coleman seamounts on an extensional fracture adjoining the SE end of Ghizo Ridge. A sediment drape, supplied in part from Simbo and Kana Keoki volcanoes, mantles the east-facing slopes of northern Simbo and Ghizo Ridges and passes distally into sediment ponded in the trench adjoining the Pacific plate. As a consequence of plate convergence, parts of the sediment drape and pond are presently being deformed, and faults are dismembering Kana Keoki and Coleman seamounts. The Woodlark system differs from other modern or Tertiary ridge subduction systems, which show wide variation in character and behaviour. Existing models describing the consequences of ridge subduction are likely to be predictive in only a general way, and deduced rules for the behaviour of oceanic lithosphere in ridge subduction systems may not be generally applicable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...