ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Description: Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50° are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-06-02
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3The Cryosphere Discussion, Copernicus Publications, 7, pp. 4379-4405, ISSN: 1994-0416
    Publication Date: 2019-07-17
    Description: Sea ice thickness information is needed for climate modeling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freezeup season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anti correlation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50 ° are found and used to develop an empirical retrieval sensitive to thin sea ice up to 50 cm thickness. It shows high correlations with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze up period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Cryosphere Discussion, Copernicus Publications, 7(6), pp. 5735-5792, ISSN: 1994-0416
    Publication Date: 2019-07-17
    Description: Following the launch of ESA's Soil Moisture and Ocean salinity (SMOS) mission it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In a first demonstration study, sea ice thickness has been derived using a semi-empirical algorithm with constant tie-points. Here we introduce a novel iterative retrieval algorithm that is based on a sea ice thermodynamic model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within a SMOS footprint are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS based sea ice thickness data set from 2010 on. This data set is compared and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  EPIC3International Geoscience and Remote Sensing Symposium (IGARSS), 5. Proceedings. IEEE International Geoscience and Remote Sensing Symposium (IGARSS'04), Anchorage, Alaska., 3021
    Publication Date: 2019-07-16
    Description: In February 2003, sea ice thickness measurements usingelectromagnetic induction (EM) based instrument were madein the Gulf of Bothnia and Gulf of Finland. We have madecomparisons between the EM measurements and Radarsat-1 ScanSAR Wide mode SAR data, and also between ouroperational sea ice products (digitized ice thickness charts, andice thickness charts refined by the latest Radarsat-1 image).The SAR images are in 100 m resolution, and the otherproducts are in 500 m resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...