ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2016-12-16
    Description: We statistically analyse the relationship between the structure of migrating dunes in the Southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as proxy for past wind conditions at interannual resolution. Dunes as wind proxies are not a totally new idea to the scientific community, but existing studies have so far analysed the link of dune structure and wind only on temporal resolutions of decades or millennia. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2016). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. Ludwig et al. (2016) suggested that the analysed dunes show an alternation in the sediment composition that can be used to determine the annual migration velocity which can be seen as a wind proxy. Here, we present a detailed statistical analysis of this record and calibrate it as a wind proxy. To our knowledge there are no adequate, homogeneous meteorological station data for this area available to validate this proxy. Therefore we based our analysis on a gridded regional meteorological reanalysis data set (coastDat2) over the recent decades. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the number of days with west and south-west wind directions above a pre-defined wind speed threshold and the dune migration velocities. To some extent, the dune intervals can be seen analogous to a tree ring widths, and hence we used a proxy-validation method usually applied in dendrochronology when the available meteorological record is short, namely the cross-validation with the leave-one-out-method. This revealed correlations between the wind record from the reanalysis and the reconstructed wind record derived from the dune structure in the range of 0.28 and 0.63. Thus, our study verifies that this type of dunes can be validated with dendrochronological methods and derive acceptable validation values as a wind proxy. The identified link between the dune annual layers and wind conditions from the meteorological reanalysis was additionally supported by the co-variability between dune layers and sea-level variations in the Southern Baltic Sea. Baltic Sea level variability in winter time is known to be strongly driven by westerly winds over this region. These results, therefore, provide an independent support, solely based on observations, of the link between annual dune layers and prevailing wind conditions.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-02-18
    Description: We analyse the variability of the probability distribution of daily wind speed in wintertime over Northern and Central Europe in a series of global and regional climate simulations covering the last centuries, and in reanalysis products covering approximately the last 60 years. The focus of the study lies on identifying the link of the variations in the wind speed distribution to the regional near-surface temperature, to the meridional temperature gradient and to the North Atlantic Oscillation. Our main result is that the link between the daily wind distribution and the regional climate drivers is strongly model dependent. The global models tend to behave similarly, although they show some discrepancies. The two regional models also tend to behave similarly to each other, but surprisingly the results derived from each regional model strongly deviates from the results derived from its driving global model. In addition, considering multi-centennial timescales, we find in two global simulations a long-term tendency for the probability distribution of daily wind speed to widen through the last centuries. The cause for this widening is likely the effect of the deforestation prescribed in these simulations. We conclude that no clear systematic relationship between the mean temperature, the temperature gradient and/or the North Atlantic Oscillation, with the daily wind speed statistics can be inferred from these simulations. The understanding of past and future changes in the distribution of wind speeds, and thus of wind speed extremes, will require a detailed analysis of the representation of the interaction between large-scale and small-scale dynamics.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-03-27
    Description: Coastal sea-level trends in the Baltic Sea display decadal-scale variations around a centennial trend. These long-term centennial trends are likely determined by climate change and centennial vertical land movements. In this study, we analyse the spatial and temporal characteristics of the decadal trend variations and investigate the links between coastal sea-level trends and atmospheric forcing on decadal time scale. This investigation mainly focuses on the identification of the possible impact of an underlying factor, apart from the effect of atmospheric circulation, on decadal sea-level trend anomalies. For this analysis, we use monthly means of long tide gauge records and gridded sea-surface-height (SSH) reconstructions. The SSH time series are constructed over the past 64 years and based on tide-gauge records and satellite altimetry. Climatic data sets are composed of the North Atlantic Oscillation (NAO) index, the Atlantic Multidecadal Oscillation (AMO) index, gridded sea-level-pressure (SLP), gridded near-surface air temperature and gridded precipitation fields. The analysis indicates that atmospheric forcing is a driving factor of decadal sea-level trends. However, its effect is geographically heterogeneous. The Baltic Sea can be classified into two parts according to atmospheric impacts on decadal sea-level trends: one part consists of the northern and eastern regions of the Baltic Sea, where this impact is large. The other one covers the southern Baltic Sea area, with a smaller impact of the atmospheric circulation. To identify the influence of the large-scale factors other than the simultaneous effect of atmospheric circulation on the Baltic Sea level trends, we filter out the direct signature of atmospheric circulation on the Baltic Sea level by a multivariate linear regression model and analysed the residuals of this regression model. These residuals hint at a common underlying factor that coherently drives the decadal sea-level trends into the similar direction in the whole Baltic Sea region. We found that this underlying effect is partly a consequence of precipitation contribution to the Baltic Sea basin in the previous season. The investigation on the relation between the AMO-index and sea-level trends implies that this detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-03-27
    Description: The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual time scale. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea-level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea-level that remains stable through the 20th century, in contrast to the much more variable link between sea-level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level-pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % sea-level of the inter-annual sea-level variance in winter and up to 79 % in summer. Sea-level in the eastern part of the Gulf of Finland is the most sensitive area to the BANOS-index in wintertime, whereas Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS-index. These mechanisms include the inverse barometer effect (IBE), fresh water balance, net energy flux and wind-induced water transport. We found that the most important mechanisms are the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea-level to the SLP gradients over this region, at seasonal time scales the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS-index in wintertime and 34% in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea-level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated to the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime. Keywords: off-shore sea-level, atmospheric factors, the Baltic Sea, the North Sea, statistical analysis.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-08-14
    Print ISSN: 1437-3254
    Electronic ISSN: 1437-3262
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-07-22
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-10-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-01-18
    Description: The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-04-18
    Description: The westerlies and trade winds over the South Atlantic and Indian Ocean are important drivers of the regional oceanography around Southern Africa, including features such as the Agulhas current, the Agulhas leakage and the Benguela upwelling. The Agulhas leakage is the transport of warm and saline water from the Indian Ocean into the South Atlantic. The leakage is stronger during intensified westerlies and probably also when the wind systems are shifted poleward. Here we analyzed the wind stress of different observational and modelled atmospheric data sets (covering the last two millennia, the recent decades and the 21st century) with regard to the intensity and position of the south-easterly trades and the westerlies. The analysis reveals that variations of both wind systems go hand in hand. A poleward shift and intensification of westerlies and trades took place during the recent decades. Furthermore, the upwelling in South Benguela slightly intensified and the characteristics of the water masses fed into the upwelling region changed with a poleward shift of the trades. Projections for strength and position of the westerlies in the 21st century depend on assumed CO2 emissions. In the strongest emission scenario a further southward displacement will occur, whereas a northward shift is modelled in the weakest emission scenario, possibly due to the dominating driving effect of ozone recovery. Thus, the Agulhas leakage has intensified during the last decades and is projected to increase if greenhouse gas emission are not reduced. This will have a small impact on Benguela upwelling strength, but will have consequences for water mass characteristics in the upwelling region. An increased contribution of Agulhas water to the upwelling feed water masses will import more preformed nutrients and oxygen into the upwelling region.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-12
    Description: Arabian Sea upwelling in the past has been generally studied based on the sediment records. We apply two earth system models and analyse the simulated water vertical velocity to investigate the variations of the coastal upwelling in the western Arabian Sea over the last millennium. In addition, two models with slightly different configurations are also employed to study the changes in upwelling in the 21st century under the strongest and the weakest greenhouse gas emission scenarios. With a negative long-term trend caused by the orbital forcing of the models, the upwelling over the last millennium is found to be closely correlated with the sea surface temperature, the Indian summer Monsoon and sediment records. The future upwelling under the Representative Concentration Pathway (RCP) 8.5 scenario reveals a negative trend, in contrast with the positive trend displayed by the upwelling favourable along-shore winds. Therefore, it is likely that other factors, like water stratification in the upper ocean layers caused by the stronger surface warming overrides the effect from the upwelling favourable wind. No significant trend is found for the upwelling under the RCP2.6 scenario, which is likely due to a compensation between the opposing effects of the increase in upwelling favourable winds and the stratification of the water column.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...