ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Li, Li; Li, Qianyu; Tian, Jun; Wang, Pinxian; Wang, Hui; Liu, Zhonghui (2011): A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters, 309(1-2), 10-20, https://doi.org/10.1016/j.epsl.2011.04.016
    Publikationsdatum: 2024-01-09
    Beschreibung: Orbital resolution thermal histories over the last 4 Ma at ODP Site 1143 in the tropical western Pacific are reconstructed using alkenone paleothermometry. The temperature profile is characterized by a steady state of ~29 °C with fluctuations 〈 1 °C before 2.7 Ma and by a strong oscillating state from 2.7 Ma, largely due to cooling by up to 4 °C from ~29 °C in interglacial to 26 °C in glacial intervals. This implies a relative warm and stable surface hydrography during the early and mid Pliocene in this region influenced by the warm pool before temperature decreases in responding to global cooling and the formation of the distinct glacial stages since the late Pliocene. Therefore, the smaller SST gradient between tropical eastern and western Pacific and between southern and northern South China Sea before the late Pliocene indicates a super sized Pliocene Pacific warm pool, while the larger SST gradient since then marks progressively intensification of the zonal Walker circulation and meridional Hadley circulation, representing the monsoon circulations in the region. The intensification of the Walker and Hadley circulations over the tropical Pacific may also have helped on the onset of glaciations and subsequent deglaciations during the late Pliocene and Pleistocene.
    Schlagwort(e): 184-1143; AGE; Alkenone, unsaturation index UK'37; Calculated from UK'37 (Müller et al, 1998); COMPCORE; Composite Core; DEPTH, sediment/rock; Gas chromatography; Joides Resolution; Leg184; Ocean Drilling Program; ODP; Sea surface temperature, annual mean; South China Sea
    Materialart: Dataset
    Format: text/tab-separated-values, 3176 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-06-30
    Beschreibung: Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodelensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologiesare used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass momentellipses. First, the models’ TC tracks are compared to observed TC tracks’ characteristics, and a subset ofthe models is chosen for analysis, based on the tracks’ similarity to observations and sample size. Potentialchanges in track types in a warming climate are identified by comparing the kernel smoothed probabilitydistributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnovsignificance test. Two track changes are identified. The first is a statistically significant increase in thenorth-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented fromexpanding equatorward due to the weak Coriolis force near the equator. The second change is an eastwardshift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicatinga possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of theresults on which model and future scenario are considered emphasizes the necessity of including multiplemodels and scenarios when considering future changes in TC characteristics.
    Beschreibung: Published
    Beschreibung: 9721–9744
    Beschreibung: 4A. Oceanografia e clima
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    American Geophysical Union
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03014, doi:10.1029/2007JC004134.
    Beschreibung: Wind-driven gyres transport volume and heat in the meridional direction, which is an important component of the climate system. The contribution of wind-driven gyres to both poleward volume and heat fluxes can be clearly identified from numerical models by a simple diagnostic tool; thus the central location, strength, and dynamical roles of wind-driven circulation in the climatological mean state and decadal variability of the oceanic circulation can be examined in detail. This diagnostic tool was applied to the Simple Ocean Data Assimilation data generated from a numerical model, with data assimilation. Our analysis indicates the important contribution due to wind-driven gyres and the strong decadal variability in the volume flux, heat flux, and central location of the wind-driven gyres in the Atlantic Ocean.
    Beschreibung: J.H. and H.W. were jointly supported by The National Natural Science Foundation of China (40406004, 40531006) and by the National Hi-Tech Project (‘‘863’’ program) of China under contract 2006AA09Z158. R.X.H. was supported by the Van Alan Clark Chair of the Woods Hole Oceanographic Institution.
    Schlagwort(e): Gyration ; Meridional volume and heat transport ; Atlantic Ocean
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-04-09
    Beschreibung: “Red tides” are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publikationsdatum: 2024-05-08
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 5363-5368 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The properties of borosilicate glass polycapillary x-ray optics have been extensively studied. Small-area scatter rejection borosilicate glass polycapillary optics have been demonstrated with good results. Many medical imaging and industrial radiographic applications for x rays would require large-area optics with good scatter rejection. Since shorter optics are easier to manufacture, optics with a shorter length would provide a faster route to bringing the benefit of polycapillary x-ray optics to these applications. Leaded glass would allow the optic to be much shorter and still give good contrast enhancement, because of the superior absorption of lead glass. In order to investigate the feasibility of using leaded glass polycapillary x-ray optics for these applications, measurements and simulations have been performed on the behavior of leaded glass polycapillary fibers in the 9–80 keV energy range. The transmission efficiencies of these fibers of different types and lengths were measured as a function of source location and x-ray energy. The measurements were analyzed using a geometrical optics simulation program, which included roughness, waviness, bending effects, and a leaded glass filter layer. Despite low transmission at low energies, leaded glass polycapillary x-ray optics with a length of 30–60 mm seem promising for many high-energy (〉20 keV) x-ray applications. The longer fibers have transmission efficiency of up to 50% in the 35–40 keV, and very low scatter transmission of less than 0.06% up to 80 keV. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...