ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 1
    Publication Date: 2011-08-24
    Description: Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 261; 5122; p. 745-748.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: 94035We report on our analysis of blended Pluto and Charon spectra over the wavelength range 1.4 to 2.5 m as obtained by the NIRI instrument on Gemini North on June 25-28, 2004. The data have a resolving power () around 1500 and a SNR around 200 per pixel. The observed blended spectra are compared to models that combine absorption from the solid ice on the surface using Hapke theory, and absorption from the gaseous atmosphere. We assume the spectrum is a combination of several spatially separate spectral units: a CH4-rich ice unit, a volatile unit (an intimate mixture of N2, CH4 and CO), and a Charon unit (H2O, ammonia hydrate and kaolinite). We test for the presence of hydrocarbons (i.e. C2H6) and nitriles (i.e. HCN) and examine cases where additional ices are present as either pure separate spatial units, mixed with the CH4-rich unit or part of the volatile unit. We conclude that 2-4 of Plutos surface is covered with pure-C2H6 and our identification of C2H6 is significantly strengthened when absorption due to gaseous CH4 is included. The inclusion of Plutos atmosphere demonstrates that low-resolution, high-SNR observations are capable of detecting Plutos atmosphere during a time when Plutos atmosphere may have been undergoing rapid changes (1988-2002) and no high-resolution spectra were obtained. In particular, we identify features at 1.665 and 2.317 m as the Q-branch of the 23 and 3+4 bands of gaseous CH4, respectively. The later band is also evident in many previously published spectra of Pluto. Our analysis finds it is unnecessary to include 13CO to explain the depth of the 2.405 m, which has been previously suggested to be a spectral blended with C2H6, but we cannot definitively rule out its presence. Funding for this work (Cook) has been provided by a NASA-PATM grant.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN18013 , AAS Annual Meeting:Division for Planetary Science; Nov 09, 2014 - Nov 14, 2014; Tuscon, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Data from NASA's New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars' Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. Just as on Mars, Pluto has landscapes that systematically vary with latitude due to past and present seasonal (and mega-seasonal) effects on two major volatiles. On Mars, those volatiles are H2O and CO2; on Pluto they are CH4 and N2. Like Mars, some landscapes on Pluto defy easy explanation. In the Plutonian arctic there is a region of large (approx. 40 km across) deep (approx. 3-4 km) pits that probably could not be formed by sublimation, or any other single process, alone. Equally bizarre is the Bladed terrain, which is composed of fields of often roughly aligned blade-like ridges covering the flanks and crests of broad regional swells. Topping the unexpected are two large mounds approximately150 km across, approx. 5-6 km high, with great central depressions at their summits. The central depressions are almost as deep as the mounds are tall. These mounds have many of the characteristics of volcanic mountains seen on Mars and elsewhere in the inner solar system. Hypotheses for the formation of these Plutonian mounds so far all have challenges, principally revolving around the need for H2O ice to support their relief and the difficulty imagining mechanisms that would mobilize H2O. From the perspective of one year after the encounter, our appreciation of the extent of Pluto's diversity and complexity is quite reminiscent of the perspective the science community had of Mars, with similar quality data sets, soon after the early reconnaissance of that planet in the late 1960s and early 70s. So certainly in this sense, Pluto is the new Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35698 , GSA 2016 Conference; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: NASA's New Horizons spacecraft has revealed that Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident on Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.
    Keywords: Lunar and Planetary Science and Exploration
    Type: EGU2016-5162 , ARC-E-DAA-TN30009 , EGU General Assembly 2016; Apr 17, 2016 - Apr 22, 2016; Vienna; Austria|Geophysical Research Abstracts; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The cameras of New Horizons will provide robust data sets that should be imminently amenable to geological analysis of the Pluto systems landscapes. In this paper, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then we broadly review the major geological processes that could potentially operate on the surfaces of Pluto and its major moon Charon. We first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. We conclude with an assessment of the prospects for endogenic activity in the form of tectonics and cryovolcanism.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21244 , Icarus (ISSN 0019-1035); 246; 65-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average +/-10% uncertainty across all sizes measured (approx.0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 +/- 0.1 over diameters D approx. = 15-200 km, and Charon's has a slope of -3.0 +/- 0.2 over diameters D approx. = 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN42831 , Icarus (ISSN 0019-1035) (e-ISSN 1090-2643); 287; 187-206
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: It is presently shown that the ratio of ethane emission to methane emission in Neptune's 7-14 micron spectrum increased by a factor of 1.47 +/- 0.11 in the period between 1985 and 1991, and that the 12.2-micron ethan feature (rather than that of methane at 7.7 microns) is implicated in the greater part of that change. It is speculated that this variation is due either to a nonuniform increase in stratospheric temperature, or (more likely) to an increase in the ethane concentration by over 15 percent.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 99; 2; p. 347-352.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...