ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: This session is intended to provide to HRP IWS attendees instant feedback on archived astronaut data, including such topics as content of archives, access, request processing, and data format. Members of the LSAH and LSDA teams will be available at a 'help desk' during the poster sessions to answer questions from researchers.
    Keywords: Documentation and Information Science
    Type: JSC-CN-34785 , 2016 Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad missionrelated vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate inflight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, onorbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32328 , Aerospace Medical Association (AsMA) Annual Scientific Meetings; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Space flight is a very unique occupational exposure with potential hazards that are not fully understood. A limited number of individuals have experienced the exposures incurred during space flight, and epidemiologic research would benefit from shared information across space agencies. However, data sharing can be problematic due to agency protection policies for personally identifiable information as well as medical records. Compliance with these protocols in the astronaut population is particularly difficult given the small, high-profile population under study. Creativity in combining data is necessary in order to overcome these difficulties and improve statistical power in research. This study presents methods in meta-analysis that may be used to combine non-attributable data across space agencies so that meaningful conclusions may be drawn about study interests. Methods for combining epidemiologic data across space agencies are presented, and the processes are demonstrated using life-time mortality data in U.S. astronauts and Russian cosmonauts. This proof of concept was found to be an acceptable way of sharing data across agencies, and will be used in the future as more relevant research interests are identified.
    Keywords: Aerospace Medicine
    Type: JSC-CN-22343 , 18th Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Ultrasonography is increasingly used to quickly measure optic nerve sheath diameter (ONSD) when increased intracranial pressure (ICP) is suspected. NASA Space and Clinical Operations Division has been using ground and onorbit ultrasound since 2009 as a proxy for ICP in nonacute monitoring for space medicine purposes. In the terrestrial emergency room population, an ONSD greater than 0.59 cm is considered highly predictive of elevated intracranial pressure. However, this cutoff limit is not applicable to the spaceflight setting since over 50% of US Operating Segment (USOS) astronauts have an ONSD greater than 0.60 cm even before launch. Crew Surgeon clinical decisionmaking is complicated by the fact that many astronauts have history of previous spaceflights. Our data characterize the distribution of baseline ONSD in the astronaut corps, its longitudinal trends in longduration spaceflight, and the predictive power of this measure related to increased ICP outcomes.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32700 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: JSC-CN-36449 , American Industrial Hygiene Conference & Exposition; May 21, 2016 - May 26, 2016; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: There are multiple factors associated with the mechanism of injury that leads to shoulder injury requiring surgical repair. Despite the injury prevention measures taken from the 2003 Shoulder Tiger Team recommendations, shoulder injuries and subsequent shoulder surgeries remain relatively unchanged.
    Keywords: Aerospace Medicine
    Type: JSC-CN-26251 , 83rd Annual Aerospace Medical Association Meeting; May 13, 2012 - May 17, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness and barotrauma as well as various musculoskeletal disorders from working in the spacesuit. The medical, operational and research communities over the years have requested access to EVA training data to better understand the risks. As a result of these requests, epidemiologists within the Lifetime Surveillance of Astronaut Health (LSAH) team have compiled records from numerous EVA training venues to quantify the exposure to EVA training. The EVA Suit Exposure Tracker (EVA SET) dataset is a compilation of ground-based training activities using the extravehicular mobility unit (EMU) in neutrally buoyant pools to enhance EVA performance on orbit. These data can be used by the current ISS program and future exploration missions by informing physicians, researchers, and operational personnel on the risks of EVA training in order that future suit and mission designs incorporate greater safety. The purpose of this technical report is to document briefly the various facilities where NASA astronauts have performed EVA training while describing in detail the EVA training records used to generate the EVA SET dataset.
    Keywords: Man/System Technology and Life Support; Aerospace Medicine
    Type: NASA/TM-2017-219291 , S-1241 , JSC-CN-38589
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: We propose using meta-analytic methods to combine summary measures across space agencies: (1) Non-attributable data (2) Avoids problems with sharing health related data (3) Unpublished data
    Keywords: Aerospace Medicine
    Type: JSC-CN-25012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT.
    Keywords: Aerospace Medicine
    Type: JSC-CN-25060 , 83rd Annual Aerospace Medical Association Meeting; May 13, 2012 - May 17, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The NASA Johnson Space Center s (NASA JSC) Committee for the Protection of Human Subjects (CPHS) recently approved the formation of two human data repositories: the Lifetime Surveillance of Astronaut Health Repository (LSAH-R) for clinical data and the Life Sciences Data Archive Repository (LSDA-R) for research data. The establishment of these repositories forms the foundation for the release of data and information beyond the scope for which the data was originally collected. The release of clinical and research data and information is primarily managed by two NASA groups: the Evidence Base Working Group (EBWG), consisting of members of both repositories, and the LSAH Policy Board. The goal of unifying these repositories and their processes is to provide a mutually supportive approach to handling medical and research data, to enhance the use of medical and research data to reduce risk, and to promote the understanding of space physiology, countermeasures and other mitigation strategies. Over the past year, both repositories have received over 100 data and information requests from a wide variety of requesters. The disposition of these requests has highlighted the challenges faced when attempting to make data collected on a unique set of subjects available beyond the original intent for which the data were collected. As the EBWG works through each request, many considerations must be factored into account when deciding what data can be shared and how - from the Privacy Act of 1974 and the Health Insurance Portability and Accountability Act (HIPAA), to NASA s Health Information Management System (10HIMS) and Human Experimental and Research Data Records (10HERD) access requirements. Additional considerations include the presence of the data in the repositories and vetting requesters for legitimacy of their use of the data. Additionally, fair access must be ensured for intramural, as well as extramural investigators. All of this must be considered in the formulation of the charters, policies and workflows for the human data repositories at NASA.
    Keywords: Life Sciences (General)
    Type: JSC-CN-24804 , 83rd AsMA Annual Scientific Meeting; May 13, 2012 - May 17, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...