ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-28
    Description: We integrated geophysical and geological methods to evalute the structural evolution of the active Teton normal fault, Wyoming, and its role in the development of the dramatic topography of Teton Range and Jackson Hole. Comparison of variations in surface offsets with the topographic expression of the Teton range crest and drainage divide, and the overall structure of the range, suggests that the effects ofpostglacial faulting cannot be discriminated from the influence of pre-extensional structures and differential; erosion on the footwall topography. In contrast, the effects of multiple scarp-forming normal faulting earthquakes are expressed by the anomalous drainage pattern and westward tilt of the hanging wall, Jackson Hole, toward the Teton fault. Kinematic boundary element fault models suggest that the westward tilt of the valley floor is the product of 110-125 m of displacement on a 45 deg-75 deg E dipping Teton fault in the past 25,000-75,000 years. Comparisons with historic normal faulting earthquake displacements imply that this range of displacement corresponds to 10-50, M greater than 7 scarp-forming earthquakes. A total throw of 2.5 to 3.5 km across the Teton fault is suggested by inverse ray-tracing and forward gravity models. These models also suggest that Laramide age structures have been offset across the Teton fault and obscure its geophysical signature but also continue to influence the structural and topographic expression of the footwall and hanging wall blocks. Paleomagnetic analyses of the approximately 2.0 Ma Huckelberry Ridge Tuff suggest that the overall westward tilt of the Teton Range is a result ofabout 10 deg of west side down tilt across the Teton fault since tuff emplacement. This suggests that much if not all of the throw across the Teton fault has accumulated in the past 2 m.y. Complex demagnetization and rock magnetic behavior and local emplacement of the Huckleberry Ridge Tuff on preexisting topogrpahy preclude determination of the amount or variations in throw along strike of the Teton fault from the paleomagnetic data.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B10; p. 20,095-20,122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Stochastic inversion for flexural loads and flexural rigidity of the continental elastic layer can be accomplished most effectively by using the coherence of gravity and topography. However, the spatial resolution of coherence analysis has been limited by use of two-dimensional periodogram spectra from very large (greater than 10(exp 5)sq km) windows that generally include multiple tectonic features. Using a two-dimensional spectral estimator based on the maximum entropy method, the spatial resolution of flexural proerties can be enhanced by a factor of 4 or more, enabling more detailed analysis at the scale of individual tectonic features. This new approach is used to map the spatial variation of flexural rigidity along the Basin and Range transition to the Colorado Plateau and Middle Rocky Mountains physiographic provinces. Large variations in flexural isostatic responses are found, with rigidities ranging from as low as 8.7 x 10(exp 20) N m (elastic thickness (T(sub e) = 4.6 km) in the Basin and Range to as high as 4.1 x 10(exp 24) N m T(sub e) = 77 km) in the Middle Rocky Mountains. These results compare favorably woith independent determinations of flexural rigidity in the region. Areas of low flexural rigidity correlate strongly with areas of high surface heat flow, as is expected from the contingence of flexural rigidity on a temperature-dependent flow law. Also, late Cenozoic normal faults with large displacements are found primarily in area of low flexural rigidity region. The highest flexural rigidity is found within the Archean Wyoming craton, where evidence suggests that deeply rooted cratonic lithosphere may play a role in determining the distribution of tectonism at the surface.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B10; p. 20,123-20,140
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...