ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Biological Society (Washington, DC)
    In:  Proceedings of The Biological Society of Washington, 105 (4). pp. 683-692.
    Publication Date: 2020-06-09
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Marine Technology Society
    In:  Marine Technology Society Journal, 33 (4). pp. 65-73.
    Publication Date: 2017-04-07
    Description: The evolution of undersea vehicles and the research they enable have been mutually interactive ever since the first research submersible appeared in the 1930s. As scientists gained access to deep water they made new demands of the technology—to go deeper, stay longer, and accomplish more. Succeeding generations of vehicles, which were additionally influenced by commercial and military needs, grew in complexity, diversity, and size. In concert, scientific utilization progressed from observation, to survey, to intervention. Three distinct vehicle types have evolved, with each at a different level of development. Manned submersibles have reached a critical juncture created by cost and logistical requirements. The next generation is developing as a class of smaller, more sophisticated vehicles that are less demanding of their support systems. ROVs are also a mature technology but their use for research is still ramping up. Development is proceeding toward combining the diverse capabilities of full-scale systems, with the small size of low-cost vehicles. AUVs are the most recent evolutionary line, with the greatest potential for rapid technological advancement and unique research applications.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-07
    Description: Coleoid cephalopods are thought to go through only one reproductive cycle in their life. We here report that vampire squid (Vampyroteuthis infernalis) show evidence of multiple reproductive cycles. Female vampire squid spawn their eggs, then return to a resting reproductive state, which is followed by the development of a new batch of eggs. This reproductive cycle is likely to be repeated more than twenty times. This combination of reproductive traits is different from that of any other extant coleoid cephalopod.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-03
    Description: Visual behaviors are prominent components of intra- and interspecific communication in shallow-water cephalopods. Meso- and bathypelagic cephalopods were believed to have limited visual communication, other than bioluminescence, due to the reduced illumination at depth. To explore potential visual behaviors in mesopelagic squid, we used undersea vehicles to observe 76 individuals of Octopoteuthis deletron. In contrast to predictions, we found this species capable of a variety of visually linked behaviors not previously reported for a deep-ocean cephalopod. The resultant ethogram describes numerous chromatic, postural, locomotor, and bioluminescent behavioral components. A few common body patterns—the whole appearance of the individual involving multiple components—are characterized. The behaviors observed from individual squid were compared using a Non-metric Multi-Dimensional Scaling (NMDS) ordination, onto which hydrographic and observation parameters were mapped. Observation length, specimen collection, and contact with the vehicle affected which behaviors were performed. A separate NMDS, analyzing the body patterns, indicated that these sets of behavioral components could be visualized as groups within the NMDS ordination. While the functional roles of the behaviors described are not yet known, our findings of numerous behaviors in O. deletron clearly indicate that bioluminescence is not the sole method of visual communication by deep-sea squid.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 300 (1-2). pp. 253-272.
    Publication Date: 2021-08-24
    Description: The deep pelagic habitat is a vast volume of cold, dark water where food is scarce and bioluminescence is the principal source of light and communication. Understanding the adaptations that allow animals to successfully inhabit this daunting realm has been a difficult challenge because investigators have had to conduct their work remotely. Research in the deep water column is going through an essential transformation from indirect to direct methods as undersea vehicles provide unprecedented access, new capabilities, and new perspectives. Traditional methods have accurately documented the meso- and macro-scale zoogeographic patterns of micronekton and zooplankton, as well as their distribution and migration patterns in the vertical plane. The new in situ technologies have enabled advances in studies of behavior, physiology, and in particular, the role of gelatinous animals in deep pelagic ecology. These discoveries reveal a deep-water fauna that is complex and diverse and still very poorly known.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  Conservation Biology, 23 (4). pp. 847-858.
    Publication Date: 2021-08-24
    Description: The deep ocean is home to the largest ecosystems on our planet. This vast realm contains what may be the greatest number of animal species, the greatest biomass, and the greatest number of individual organisms in the living world. Humans have explored the deep ocean for about 150 years, and most of what is known is based on studies of the deep seafloor. In contrast, the water column above the deep seabed comprises more than 90% of the living space, yet less than 1% of this biome has been explored. The deep pelagic biota is the largest and least-known major faunal group on Earth despite its obvious importance at the global scale. Pelagic species represent an incomparable reservoir of biodiversity. Although we have yet to discover and describe the majority of these species, the threats to their continued existence are numerous and growing. Conserving deep pelagic biodiversity is a problem of global proportions that has never been addressed comprehensively. The potential effects of these threats include the extensive restructuring of entire ecosystems, changes in the geographical ranges of many species, large-scale elimination of taxa, and a decline in biodiversity at all scales. This review provides an initial framework of threat assessment for confronting the challenge of conserving deep pelagic biodiversity; and it outlines the need for baseline surveys and protected areas as preliminary policy goals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Biology Letters, 8 (2). pp. 287-290.
    Publication Date: 2021-09-07
    Description: Little is known about the reproductive habits of deep-living squids. Using remotely operated vehicles in the deep waters of the Monterey Submarine Canyon, we have found evidence of mating, i.e. implanted sperm packages, on similar body locations in males and females of the rarely seen mesopelagic squid Octopoteuthis deletron . Equivalent numbers of both sexes were found to have mated, indicating that male squid routinely and indiscriminately mate with both males and females. Most squid species are short-lived, semelparous (i.e. with a single, brief reproductive period) and promiscuous. In the deep, dark habitat where O. deletron lives, potential mates are few and far between. We suggest that same-sex mating behaviour by O. deletron is part of a reproductive strategy that maximizes success by inducing males to indiscriminately and swiftly inseminate every conspecific that they encounter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 438 (7070). p. 929.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 313 (2). pp. 375-387.
    Publication Date: 2021-08-23
    Description: The majority of squid families (Teuthoidea: Cephalopoda) exchange sodium for ammonium, creating a low-density fluid that imparts lift for neutral buoyancy. However, previous methods for measuring ammonium did not distinguish between NH4+ and various other amine compounds. The present study, using single column ion chromatography, reassessed the cation concentrations in several midwater cephalopod species. High NH4+ levels were confirmed for histioteuthid, cranchiid, and chiroteuthid and related squids. A strong relationship is reported between ammonium content and body mass in Histioteuthis heteropsis, suggesting a gradual accumulation of ammonium coincident with an ontogenetic migration to greater depths. The bathypelagic squids Bathyteuthis abyssicola and Bathyteuthis berryi, on the other hand, contained very little ammonium but rather contained large quantities of an as yet unidentified cation. The ecological significance of this compound is not yet known. Morphology in Bathyteuthid squids suggests that the unknown cation is contained intracellularly and so, unlike sequestered ammonia, does not diminish the space available for muscle tissue. Accordingly, protein measurements in B. berryi mantle muscle are on par with shallower-living muscular squids, and in situ submersible observations reveal strong locomotory abilities relative to other deep-water squids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...